4,098 research outputs found
A flexible low-cost, high-precision, single interface electrical impedance tomography system for breast cancer detection using FPGA
Typically, in multi-frequency Electrical Impedance Tomography (EIT) systems, a current is applied and the voltages developed across the subject are detected. However, due to the complexity of designing stable current sources, there has been mention in the literature of applying a voltage to the subject whilst measuring the consequent current flow. This paper presents a comparative study between the two techniques in a novel design suitable for the detection of breast cancers. The suggested instrument borrows the best features of both the injection of current and the application of voltage, circumventing their limitations. Furthermore, the system has a common patient-electrode interface for both methodologies, whilst the control of the system and the necessary signal processing is carried out in a field programmable gate array (FPGA). Through this novel system, wide-bandwidth, low-noise, as well as high-speed (frame rate) can be achieved
Magnetohydrodynamic equilibria of a cylindrical plasma with poloidal mass flow and arbitrary cross section shape
The equilibrium of a cylindrical plasma with purely poloidal mass flow and
cross section of arbitrary shape is investigated within the framework of the
ideal MHD theory. For the system under consideration it is shown that only
incompressible flows are possible and, conscequently, the general two
dimensional flow equilibrium equations reduce to a single second-order
quasilinear partial differential equation for the poloidal magnetic flux
function , in which four profile functionals of appear. Apart from
a singularity occuring when the modulus of Mach number associated with the
Alfv\'en velocity for the poloidal magnetic field is unity, this equation is
always elliptic and permits the construction of several classes of analytic
solutions. Specific exact equlibria for a plasma confined within a perfectly
conducting circular cylindrical boundary and having i) a flat current density
and ii) a peaked current density are obtained and studied.Comment: Accepted to Plasma Physics & Controlled Fusion, 14 pages, revte
Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data
Presented is a description of a Markov chain Monte Carlo (MCMC) parameter
estimation routine for use with interferometric gravitational radiational data
in searches for binary neutron star inspiral signals. Five parameters
associated with the inspiral can be estimated, and summary statistics are
produced. Advanced MCMC methods were implemented, including importance
resampling and prior distributions based on detection probability, in order to
increase the efficiency of the code. An example is presented from an
application using realistic, albeit fictitious, data.Comment: submitted to Classical and Quantum Gravity. 14 pages, 5 figure
A multiscale analysis of gene flow for the New England cottontail, an imperiled habitat specialist in a fragmented landscape
Landscape features of anthropogenic or natural origin can influence organisms\u27 dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2-36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both barriers and facilitators of dispersal for an early successional habitat specialist in a fragmented landscape
Reduced tillage, but not organic matter input, increased nematode diversity and food web stability in European long‐term field experiments
Soil nematode communities and food web indices can inform about the complexity, nutrient flows and decomposition pathways of soil food webs, reflecting soil quality. Relative abundance of nematode feeding and life‐history groups are used for calculating food web indices, i.e., maturity index (MI), enrichment index (EI), structure index (SI) and channel index (CI). Molecular methods to study nematode communities potentially offer advantages compared to traditional methods in terms of resolution, throughput, cost and time. In spite of such advantages, molecular data have not often been adopted so far to assess the effects of soil management on nematode communities and to calculate these food web indices. Here, we used high‐throughput amplicon sequencing to investigate the effects of tillage (conventional vs. reduced) and organic matter addition (low vs. high) on nematode communities and food web indices in 10 European long‐term field experiments and we assessed the relationship between nematode communities and soil parameters. We found that nematode communities were more strongly affected by tillage than by organic matter addition. Compared to conventional tillage, reduced tillage increased nematode diversity (23% higher Shannon diversity index), nematode community stability (12% higher MI), structure (24% higher SI), and the fungal decomposition channel (59% higher CI), and also the number of herbivorous nematodes (70% higher). Total and labile organic carbon, available K and microbial parameters explained nematode community structure. Our findings show that nematode communities are sensitive indicators of soil quality and that molecular profiling of nematode communities has the potential to reveal the effects of soil management on soil quality
Hibernation is associated with increased survival and the evolution of slow life histories among mammals
Survival probability is predicted to underlie the evolution of life histories along a slow–fast continuum. Hibernation allows a diverse range of small mammals to exhibit seasonal dormancy, which might increase survival and consequently be associated with relatively slow life histories. We used phylogenetically informed GLS models to test for an effect of hibernation on seasonal and annual survival, and on key attributes of life histories among mammals. Monthly survival was in most cases higher during hibernation compared with the active season, probably because inactivity minimizes predation. Hibernators also have approximately 15 per cent higher annual survival than similar sized non-hibernating species. As predicted, we found an effect of hibernation on the relationships between life history attributes and body mass: small hibernating mammals generally have longer maximum life spans (50% greater for a 50 g species), reproduce at slower rates, mature at older ages and have longer generation times compared with similar-sized non-hibernators. In accordance with evolutionary theories, however, hibernating species do not have longer life spans than non-hibernators with similar survival rates, nor do they have lower reproductive rates than non-hibernators with similar maximum life spans. Thus, our combined results suggest that (i) hibernation is associated with high rates of overwinter and annual survival, and (ii) an increase in survival in hibernating species is linked with the coevolution of traits indicative of relatively slow life histories
Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions.
The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals
Fast stable direct fitting and smoothness selection for Generalized Additive Models
Existing computationally efficient methods for penalized likelihood GAM
fitting employ iterative smoothness selection on working linear models (or
working mixed models). Such schemes fail to converge for a non-negligible
proportion of models, with failure being particularly frequent in the presence
of concurvity. If smoothness selection is performed by optimizing `whole model'
criteria these problems disappear, but until now attempts to do this have
employed finite difference based optimization schemes which are computationally
inefficient, and can suffer from false convergence. This paper develops the
first computationally efficient method for direct GAM smoothness selection. It
is highly stable, but by careful structuring achieves a computational
efficiency that leads, in simulations, to lower mean computation times than the
schemes based on working-model smoothness selection. The method also offers a
reliable way of fitting generalized additive mixed models
Multiple metrics of latitudinal patterns in insect pollination and herbivory for a tropical‐temperate congener pair
The biotic interactions hypothesis posits that biotic interactions are more important drivers of adaptation closer to the equator, evidenced by “stronger” contemporary interactions (e.g. greater interaction rates) and/or patterns of trait evolution consistent with a history of stronger interactions. Support for the hypothesis is mixed, but few studies span tropical and temperate regions while experimentally controlling for evolutionary history. Here, we integrate field observations and common garden experiments to quantify the relative importance of pollination and herbivory in a pair of tropical‐temperate congeneric perennial herbs. Phytolacca rivinoides and P. americana are pioneer species native to the Neotropics and the eastern USA, respectively. We compared plant‐pollinator and plant‐herbivore interactions between three tropical populations of P. rivinoides from Costa Rica and three temperate populations of P. americana from its northern range edge in Michigan and Ohio. For some metrics of interaction importance, we also included three subtropical populations of P. americana from its southern range edge in Florida. This approach confounds species and region but allows us, uniquely, to measure complementary proxies of interaction importance across a tropical‐temperate range in one system. To test the prediction that lower‐latitude plants are more reliant on insect pollinators, we quantified floral display and reward, insect visitation rates, and self‐pollination ability (autogamy). To test the prediction that lower‐latitude plants experience more herbivore pressure, we quantified herbivory rates, herbivore abundance, and leaf palatability. We found evidence supporting the biotic interactions hypothesis for most comparisons between P. rivinoides and north‐temperate P. americana (floral display, insect visitation, autogamy, herbivory, herbivore abundance, and young‐leaf palatability). Results for subtropical P. americana populations, however, were typically not intermediate between P. rivinoides and north‐temperate P. americana, as would be predicted by a linear latitudinal gradient in interaction importance. Subtropical young‐leaf palatability was intermediate, but subtropical mature leaves were the least palatable, and pollination‐related traits did not differ between temperate and subtropical regions. These nonlinear patterns of interaction importance suggest future work to relate interaction importance to climatic or biotic thresholds. In sum, we found that the biotic interactions hypothesis was more consistently supported at the larger spatial scale of our study
- …