10,918 research outputs found

    Acoustic displacement triangle based on the individual element test

    Get PDF
    A three node, displacement based, acoustic element is developed. In order to avoid spurious rotational modes, a higher order stiffness is introduced. The higher order stiffness is developed from an incompatible strain field which computes element volume changes under nodal rotational displacements fields. The higher order strain satisfies the IET requirements, non affecting convergence. The higher order stiffness is modulated, element by element, with a factor. Thus, the displacement based formulation is capable of placing the spurious rotational modes over the range of physical compressional modes that can be accurately captured by the mesh

    Case studies on the geological application of LANDSAT imagery in Brazil

    Get PDF
    The author has identified the following significant results. Sao Domingos Range, Pocos de Caldas, and Araguaia and Tocantins Rivers in Brazil were selected as test sites for LANDSAT imagery. The satellite images were analyzed using conventional photointerpretation techniques, and the results indicate the application of small scale image data in regional structural data analysis, geological mapping, and mineral exploration

    Coupled scalar fields Oscillons and Breathers in some Lorentz Violating Scenarios

    Get PDF
    In this work we discuss the impact of the breaking of the Lorentz symmetry on the usual oscillons, the so-called flat-top oscillons, and the breathers. Our analysis is performed by using a Lorentz violation scenario rigorously derived in the literature. We show that the Lorentz violation is responsible for the origin of a kind of deformation of the configuration, where the field configuration becomes oscillatory in a localized region near its maximum value. Furthermore, we show that the Lorentz breaking symmetry produces a displacement of the oscillon along the spatial direction, the same feature is present in the case of breathers. We also show that the effect of a Lorentz violation in the flat-top oscillon solution is responsible by the shrinking of the flat-top. Furthermore, we find analytically the outgoing radiation, this result indicates that the amplitude of the outgoing radiation is controlled by the Lorentz breaking parameter, in such away that this oscillon becomes more unstable than its symmetric counterpart, however, it still has a long living nature

    On the study of oscillons in scalar field theories: A new approach

    Get PDF
    In this work we study configurations in one-dimensional scalar field theory, which are time-dependent, localized in space and extremely long-lived called oscillons. It is investigated how the action of changing the minimum value of the field configuration representing the oscillon affects its behavior. We find that one of the consequences of this procedure, is the appearance of a pair of oscillon-like structures presenting different amplitudes and frequencies of oscillation. We also compare our analytical results to numerical ones, showing excellent agreement

    The Resonance Overlap and Hill Stability Criteria Revisited

    Get PDF
    We review the orbital stability of the planar circular restricted three-body problem, in the case of massless particles initially located between both massive bodies. We present new estimates of the resonance overlap criterion and the Hill stability limit, and compare their predictions with detailed dynamical maps constructed with N-body simulations. We show that the boundary between (Hill) stable and unstable orbits is not smooth but characterized by a rich structure generated by the superposition of different mean-motion resonances which does not allow for a simple global expression for stability. We propose that, for a given perturbing mass m1m_1 and initial eccentricity ee, there are actually two critical values of the semimajor axis. All values aaunstablea a_{\rm unstable} are unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is a function of the eccentricity. The second limit is virtually insensitive to the initial eccentricity, and closely resembles a new resonance overlap condition (for circular orbits) developed in terms of the intersection between first and second-order mean-motion resonances.Comment: 33 pages, 14 figures, accepte
    corecore