2,216 research outputs found
Study of the dependence of 198Au half-life on source geometry
We report the results of an experiment to determine whether the half-life of
\Au{198} depends on the shape of the source. This study was motivated by recent
suggestions that nuclear decay rates may be affected by solar activity, perhaps
arising from solar neutrinos. If this were the case then the -decay
rates, or half-lives, of a thin foil sample and a spherical sample of gold of
the same mass and activity could be different. We find for \Au{198},
, where
is the mean half-life. The maximum neutrino flux at the sample in our
experiments was several times greater than the flux of solar neutrinos at the
surface of the Earth. We show that this increase in flux leads to a significant
improvement in the limits that can be inferred on a possible solar contribution
to nuclear decays.Comment: 5 pages, 1 figur
Meson Exchange Currents in (e,e'p) recoil polarization observables
A study of the effects of meson-exchange currents and isobar configurations
in reactions is presented. We use a distorted wave
impulse approximation (DWIA) model where final-state interactions are treated
through a phenomenological optical potential. The model includes relativistic
corrections in the kinematics and in the electromagnetic one- and two-body
currents. The full set of polarized response functions is analyzed, as well as
the transferred polarization asymmetry. Results are presented for proton
knock-out from closed-shell nuclei, for moderate to high momentum transfer.Comment: 44 pages, 18 figures. Added physical arguments explaining the
dominance of OB over MEC, and a summary of differences with previous MEC
calculations. To be published in PR
The four dimensional site-diluted Ising model: a finite-size scaling study
Using finite-size scaling techniques, we study the critical properties of the
site-diluted Ising model in four dimensions. We carry out a high statistics
Monte Carlo simulation for several values of the dilution. The results support
the perturbative scenario: there is only the Ising fixed point with large
logarithmic scaling corrections. We obtain, using the Perturbative
Renormalization Group, functional forms for the scaling of several observables
that are in agreement with the numerical data.Comment: 30 pages, 8 postscript figure
Soft x-ray spectroscopy experiments on the near K-edge of B in MB2 (M=Mg, Al, Ta, and Nb)
Soft X-ray absorption and emission measurements are performed for the K- edge
of B in MB (M=Mg, Al, Ta and Nb). Unique feature of MgB with a high
density of B 2-state below and above the Fermi edge, which
extends to 1 eV above the edge, is confirmed. In contrast, the B 2 density
of states in AlB and TaB, both of occupied and unoccupied states,
decreased linearly towards the Fermi energy and showed a dip at the Fermi
energy. Furthermore, there is a broadening of the peaks with
-character in XES and XAS of AlB, which is due to the increase of
three dimensionality in the -band in AlB. The DOS of NbB has a
dip just below the Fermi energy. The present results indicate that the large
DOS of B-2 states near the Fermi energy are crucial for the
superconductivity of MgB.Comment: 3 pages text and 4 pages figures. accepted for publication to Phys.
Rev.
Deep inelastic scattering and "elastic" diffraction
We examine the total cross section of virtual photons on protons,
, at low and its
connection with ``elastic'' diffractive production in the two-gluon exchange dynamics for the virtual forward
Compton scattering amplitude. Solely based on the generic structure of
two-gluon exchange, we establish that the cross section is described by the
(imaginary part of the) amplitude for forward scattering of vector
states, . The
generalized vector dominance/color dipole picture (GVD/CDP) is accordingly
established to only rest on the two-gluon-exchange generic structure. This is
explicitly seen by the sum rules that allow one to directly relate the total
cross section to the cross section for elastic diffractive forward production,
, of vector states.Comment: 24 pages, latex file with three eps figures. BI-TP 2002/2
The role of occupied d states in the relaxation of hot electrons in Au
We present first-principles calculations of electron-electron scattering
rates of low-energy electrons in Au. Our full band-structure calculations
indicate that a major contribution from occupied d states participating in the
screening of electron-electron interactions yields lifetimes of electrons in Au
with energies of above the Fermi level that are larger than
those of electrons in a free-electron gas by a factor of . This
prediction is in agreement with a recent experimental study of ultrafast
electron dynamics in Au(111) films (J. Cao {\it et al}, Phys. Rev. B {\bf 58},
10948 (1998)), where electron transport has been shown to play a minor role in
the measured lifetimes of hot electrons in this material.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
Comparing different freeze-out scenarios in azimuthal hadron correlations induced by fast partons
I review the linearized hydrodynamical treatment of a fast parton traversing
a perturbative quark-gluon plasma. Using numerical solutions for the medium's
response to the fast parton, I obtain the medium's distribution function which
is then used in a Cooper-Frye freeze-out prescription to obtain an azimuthal
particle spectrum. Two different freeze-out scenarios are considered which
yield significantly different results. I conclude that any meaningful
comparison of azimuthal hadron correlation functions to RHIC data requires
implementing a realistic freeze-out scenario in an expanding medium.Comment: Contribution to the Proceedings for 2008 Hot Quarks in Estes Park,
CO, as accepted for publication in EPJ-
Channel Coupling in Reactions
The sensitivity of momentum distributions, recoil polarization observables,
and response functions for nucleon knockout by polarized electrons to channel
coupling in final-state interactions is investigated using a model in which
both the distorting and the coupling potentials are constructed by folding
density-dependent effective interactions with nuclear transition densities.
Calculations for O are presented for 200 and 433 MeV ejectile energies,
corresponding to proposed experiments at MAMI and TJNAF, and for C at 70
and 270 MeV, corresponding to experiments at NIKHEF and MIT-Bates. The relative
importance of charge exchange decreases as the ejectile energy increases, but
remains significant for 200 MeV. Both proton and neutron knockout cross
sections for large recoil momenta, MeV/c, are substantially
affected by inelastic couplings even at 433 MeV. Significant effects on the
cross section for neutron knockout are also predicted at smaller recoil
momenta, especially for low energies. Polarization transfer for proton knockout
is insensitive to channel coupling, even for fairly low ejectile energies, but
polarization transfer for neutron knockout retains nonnegligible sensitivity to
channel coupling for energies up to about 200 MeV. The present results suggest
that possible medium modifications of neutron and proton electromagnetic form
factors for can be studied using recoil
polarization with relatively little sensitivity due to final state
interactions.Comment: Substantially revised version accepted by Phys. Rev. C; shortened to
49 pages including 21 figure
Charged hydrogenic problem in a magnetic field: Non-commutative translations, unitary transformations, and coherent states
An operator formalism is developed for a description of charged electron-hole
complexes in magnetic fields. A novel unitary transformation of the Hamiltonian
that allows one to partially separate the center-of-mass and internal motions
is proposed. We study the operator algebra that leads to the appearance of new
effective particles, electrons and holes with modified interparticle
interactions, and their coherent states in magnetic fields. The developed
formalism is used for studying a two-dimensional negatively charged
magnetoexciton . It is shown that Fano-resonances are present in the
spectra of internal transitions, indicating the existence of
three-particle quasi-bound states embedded in the continuum of higher Landau
levels.Comment: 9 pages + 2 figures, accepted in PRB, a couple of typos correcte
Relativistic calculation of nuclear transparency in (e,e'p) reactions
Nuclear transparency in (e,e'p) reactions is evaluated in a fully
relativistic distorted wave impulse approximation model. The relativistic mean
field theory is used for the bound state and the Pauli reduction for the
scattering state, which is calculated from a relativistic optical potential.
Results for selected nuclei are displayed in a Q^2 range between 0.3 and 1.8
(GeV/c)^2 and compared with recent electron scattering data. For Q^2 = 0.3
(GeV/c)^2 the results are lower than data; for higher Q^2 they are in
reasonable agreement with data. The sensitivity of the model to different
prescriptions for the one-body current operator is investigated. The off-shell
ambiguities are rather large for the distorted cross sections and small for the
plane wave cross sections.Comment: 8 pages, 3 figure
- …