754 research outputs found

    Chronic Pancreatitis Progressing to Duodenal Obstruction in the Absence of Classic Symptoms

    Get PDF
    We report the case of a 34-year-old alcoholic who was initially seen in March 1985 because of acute pancreatitis. A mass was demonstrated in the head of the pancreas. Serial sonogram and computed tomography scans over 4 1/2 years revealed progressive encroachment of the duodenum without symptoms attributable to obstruction. In 1989, three separate endoscopies with multiple biopsies showed chronic inflammation and strictures. Hypotonic duodenography confirmed stricture and obstructed duodenum. Surgical intervention is being considered. Duodenal obstruction secondary to chronic pancreatitis is rare. It may proceed subclinically for several years independent of continued alcohol use. Only when obstruction became severe in our patient did the classic symptoms of postprandial nausea, emesis, and weight loss become manifest. Obstructive jaundice from chronic pancreatitis due to stricture in the pancreatic portion of the common bile duct is uncommon

    Demographic trade-offs predict tropical forest dynamics

    Get PDF
    Understanding tropical forest dynamics and planning for their sustainable management require efficient, yet accurate, predictions of the joint dynamics of hundreds of tree species. With increasing information on tropical tree life histories, our predictive understanding is no longer limited by species data but by the ability of existing models to make use of it. Using a demographic forest model, we show that the basal area and compositional changes during forest succession in a neotropical forest can be accurately predicted by representing tropical tree diversity (hundreds of species) with only five functional groups spanning two essential trade-offs—the growth-survival and stature-recruitment trade-offs. This data-driven modeling framework substantially improves our ability to predict consequences of anthropogenic impacts on tropical forests

    Tree Species Vary Widely in Their Tolerance for Liana Infestation: A Case Study of Differential Host Response to Generalist Parasites

    Get PDF
    Lianas are structural parasites of trees and reduce individual host tree growth, survival and fecundity. Thus, liana infestation is expected to affect tree population growth rates, with potentially different effects in different species depending on the frequency of liana infestation and the impact of liana infestation on population growth rates. Previous studies have documented the myriad negative effects of lianas on trees and variation in liana infestation among tree species; however, no study has quantified the impact of liana infestation on individual tree species population growth rates. Lianas are increasing in abundance in multiple Neotropical sites, which may have profound consequences for tree species composition if lianas differentially affect host tree species population growth. Here, we use long‐term data to evaluate the effects of liana infestation on the reproduction, growth, survival and ultimately population growth rates of dozens of tree species from Barro Colorado Island, Panama. We then test whether liana infestation affects tree species differentially with respect to two axes of life‐history variation: adult stature and position along the fast–slow axis, a measure of shade tolerance. Liana infestation decreased tree growth, survival and reproduction, with the strongest effects on survival in fast‐growing, light‐demanding species and on reproduction in large‐statured species. In combination, these effects reduced tree population growth rates such that liana‐infested populations declined by an average of 1.4% annually relative to conspecific liana‐free populations. The reduction in population growth rates was greatest among fast‐growing species and smaller in slow‐growing species. Synthesis. Our results demonstrate that liana infestation has strong negative effects on tree population growth rates, which vary systematically among tree species with tree life history. The finding that liana infestation is more harmful to fast‐growing tree species appears to be at odds with the general expectations in the literature. We propose that this is likely due to survivorship bias, as infestation greatly decreases survival in fast‐growing species such that the observable sample is biased towards those that survived and liana‐free. In combination with data on how tree species vary in liana infestation rates, these results provide a basis for predicting the impacts of changes in liana abundance on tree species composition

    Tradeoffs in jet inlet design: a historical perspective

    No full text
    The design of the inlet(s) is one of the most demanding tasks of the development process of any gas turbine-powered aircraft. This is mainly due to the multi-objective and multidisciplinary nature of the exercise. The solution is generally a compromise between a number of conflicting goals and these conflicts are the subject of the present paper. We look into how these design tradeoffs have been reflected in the actual inlet designs over the years and how the emphasis has shifted from one driver to another. We also review some of the relevant developments of the jet age in aerodynamics and design and manufacturing technology and we examine how they have influenced and informed inlet design decision

    Growth Strategies of Tropical Tree Species: Disentangling Light and Size Effects

    Get PDF
    An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how species differ in their response of growth to resource availability and individual size. We use a hierarchical Bayesian approach to quantify the impact of light availability and tree diameter on growth of 274 woody species in a 50-ha long-term forest census plot in Barro Colorado Island, Panama. Light reaching each individual tree was estimated from yearly vertical censuses of canopy density. The hierarchical Bayesian approach allowed accounting for different sources of error, such as negative growth observations, and including rare species correctly weighted by their abundance. All species grew faster at higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly all species exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized conditions (5 cm dbh, 5% light) varied over a 9-fold range and reflect strong growth-strategy differentiation between the species. As a consequence, growth rankings of the species at low (2%) and high light (20%) were highly correlated. Rare species tended to grow faster and showed a greater sensitivity to light than abundant species. Overall, tree size was less important for growth than light and about half the species were predicted to grow faster in diameter when bigger or smaller, respectively. Together light availability and tree diameter only explained on average 12% of the variation in growth rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping tree growth in the tropics

    Biogeographic distributions of neotropical trees reflect their directly measured drought tolerances

    Get PDF
    High levels of species diversity hamper current understanding of how tropical forests may respond to environmental change. In the tropics, water availability is a leading driver of the diversity and distribution of tree species, suggesting that many tropical taxa may be physiologically incapable of tolerating dry conditions, and that their distributions along moisture gradients can be used to predict their drought tolerance. While this hypothesis has been explored at local and regional scales, large continental-scale tests are lacking. We investigate whether the relationship between drought-induced mortality and distributions holds continentally by relating experimental and observational data of drought-induced mortality across the Neotropics to the large-scale bioclimatic distributions of 115 tree genera. Across the different experiments, genera affiliated to wetter climatic regimes show higher drought-induced mortality than dry-affiliated ones, even after controlling for phylogenetic relationships. This pattern is stronger for adult trees than for saplings or seedlings, suggesting that the environmental filters exerted by drought impact adult tree survival most strongly. Overall, our analysis of experimental, observational, and bioclimatic data across neotropical forests suggests that increasing moisture-stress is indeed likely to drive significant changes in floristic composition
    corecore