10 research outputs found

    Interests and limits of machine learning-based neural networks for rotor position estimation in EV traction drives

    No full text
    International audienc

    Hybrid position estimator based on high-frequency signal injection and machine learning for EV fault-tolerant control

    No full text
    International audienc

    Effet de la saturation magnétique sur la performance de la commande sensorless d'une MSAP à l'arret et en basse vitesse dans un contexte automobile

    No full text
    International audienceCe travail s’intéresse aux techniques d’estimationsans capteur mécanique (Sensorless) de la position et la vitessed’une Machine Synchrone à Aimants Permanents Internes(MSAPI) destinée à des applications de type véhicule électrique.Les techniques d’injection d’un signal haute fréquence en bassevitesse et à l’arrêt ont été développées. Ces techniques s’appuientsur l’anisotropie du circuit magnétique. En effet, la faisabilité et lesperformances de l’estimation dépendent fortement de la saillancede la machine, notamment dans les régions de fonctionnementsaturées. Ainsi, l’objectif de ce travail est d’abord d’explorerl’impact de la saturation magnétique sur la saillance de la machineet puis d’identifier, en conséquence, les zones de validité del’algorithme sensorless tout en prenant compte la stratégie decontrôle de courant adoptée

    The PLATO Mission

    No full text
    International audiencePLATO (PLAnetary Transits and Oscillations of stars) is ESA's M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2 R_(Earth)) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5 %, 10 %, 10 % for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO's target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile at the beginning of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases
    corecore