180 research outputs found
Recommended from our members
Establishing and Monitoring SLAs in complex Service Based Systems
In modern service economies, service provisioning needs to be regulated by complex SLA hierarchies among providers of heterogeneous services, defined at the business, software, and infrastructure layers. Starting from the SLA Management framework defined in the SLA@SOI EU FP7 Integrated Project, we focus on the relationship between establishment and monitoring of such SLAs, showing how the two processes become tightly interleaved in order to provide meaningful mechanisms for SLA management. We first describe the process for SLA establishment adopted within the framework; then, we propose an architecture for monitoring established SLAs, which satisfies the two main requirements introduced by SLA establishment: the availability of historical data for evaluating SLA offers and the assessment of the capability to monitor the terms in a SLA offer
An Overview of the Application of Blue Light-Emitting Diodes as a Non-Thermic Green Technology for Microbial Inactivation in the Food Sector
Blue light is an emerging technology used for the decontamination of food contact surfaces and products. It is based on the activation of photosensitizers by light, determining the release of reactive oxygen species (ROS). ROS causes damage to bacterial cells leading to cell death. Several types of microbes may be treated, such as bacteria, yeasts, moulds and viruses, in planktonic or biofilm form. Blue light technology is affected by several factors: light parameters (i.e., irradiance, dose, wavelength), microbial parameters (i.e., pH, temperature, initial inoculum, grade of biofilm maturation) and surface parameters (i.e., material, roughness, and optical properties). In addition, it may be used alone or coupled with other technologies. The use of blue light shows several advantages, such as safety for food operators, and a lower release of chemicals in the environment. Moreover, it seems unlikely for bacteria to develop resistance to the blue light application
Detection of SARS-CoV-2 infection prevalence in 860 cancer patients with a combined screening procedure including triage, molecular nasopharyngeal swabs and rapid serological test. A report from the first epidemic wave
Introduction Even if now we have available the weapon of vaccination against SARS-CoV-2, the patients with cancer remains a very frail population in which frequently the immunologic response to vaccination may be impaired. In this setting, the SARS-CoV-2 infection screening retains a great value. However, there are still limited data on the feasibility and efficacy of combined screening procedures to assess the prevalence of SARS-CoV-2 infection (including asymptomatic cases) in cancer outpatients undergoing antineoplastic therapy. Patients and results From May 1, 2020, to June 15, 2020, during the first wave of SARS-CoV-2 pandemic, 860 consecutive patients, undergoing active anticancer therapy, were evaluated and tested for SARS-CoV-2 with a combined screening procedure, including a self-report questionnaire, a molecular nasopharyngeal swab (NPS) and a rapid serological immunoassay (for anti- SARS-CoV-2 IgG/IgM antibodies). The primary endpoint of the study was to estimate the prevalence of SARS-CoV-2 infection (including asymptomatic cases) in consecutive and unselected cancer outpatients by a combined screening modality. A total of 2955 SARSCoV- 2 NPS and 860 serological tests, in 475 patients with hematologic cancers and in 386 with solid tumors, were performed. A total of 112 (13%) patients self-reported symptoms potentially COVID-19 related. In 1/860 cases (< 1%) SARS-CoV-2 NPS was positive and in 14 cases (1.62%) the specific serological test was positive (overall prevalence of SARSCoV-2 infection 1.62%). Of the 112 cases who declared symptoms potentially COVID-19- related, only 2.7% (3/112) were found SARS-CoV-2 positive. Conclusions This is the largest study reporting the feasibility of a combined screening procedure (including triage, NPS and serologic test) to evaluate the prevalence of SARS-CoV-2 infection in cancer patients receiving active therapy, during the first epidemic wave and under the restrictive lockdown measures, in one of the active areas of the SARS-CoV-2 circulation. Lacking specific recommendations for the detection of asymptomatic SARS-CoV-2 cases, a combined diagnostic screening might be more effective to detect the exact prevalence of SARS-CoV-2 in neoplastic patient population. The prevalence can obviously change according to the territorial context, the entity of the restrictive measures adopted and the phase of the epidemic curve. However, its exact and real-time knowledge could be important to balance risks/benefits of oncologic treatments, avoiding (if the prevalence is low) the reduction of dose intensity or the selection of less intensive (but also less effective) anti-cancer therapies
Feasibility and Predictive Performance of a Triage System for Patients with Cancer During the COVID-19 Pandemic
Background: Triage procedures have been implemented to limit hospital access and minimize infection risk among patients with cancer during the coronavirus disease (COVID-19) outbreak. In the absence of prospective evidence, we aimed to evaluate the predictive performance of a triage system in the oncological setting. Materials and Methods: This retrospective cohort study analyzes hospital admissions to the oncology and hematology department of Udine, Italy, during the COVID-19 pandemic (March 30 to April 30, 2020). A total of 3,923 triage procedures were performed, and data of 1,363 individual patients were reviewed. Results: A self-report triage questionnaire identified 6% of triage-positive procedures, with a sensitivity of 66.7% (95% confidence interval [CI], 43.0%â85.4%), a specificity of 94.3% (95% CI, 93.5%â95.0%), and a positive predictive value of 5.9% (95% CI, 4.3%â8.0%) for the identification of patients who were not admitted to the hospital after medical review. Patients with thoracic cancer (odds ratio [OR], 1.69; 95% CI, 1.13â2.53, p =.01), younger age (OR, 1.52; 95% CI, 1.15â2.01, p <.01), and body temperature at admission â„37°C (OR, 9.52; 95% CI, 5.44â16.6, p <.0001) had increased risk of positive triage. Direct hospital access was warranted to 93.5% of cases, a further 6% was accepted after medical evaluation, whereas 0.5% was refused at admission. Conclusion: A self-report questionnaire has a low positive predictive value to triage patients with cancer and suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) symptoms. Differential diagnosis with tumor- or treatment-related symptoms is always required to avoid unnecessary treatment delays. Body temperature measurement improves the triage process's overall sensitivity, and widespread SARS-CoV-2 testing should be implemented to identify asymptomatic carriers. Implications for Practice: This is the first study to provide data on the predictive performance of a triage system in the oncological setting during the coronavirus disease outbreak. A questionnaire-based triage has a low positive predictive value to triage patients with cancer and suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) symptoms, and a differential diagnosis with tumor- or treatment-related symptoms is mandatory to avoid unnecessary treatment delays. Consequently, adequate recourses should be reallocated for a triage implementation in the oncological setting. Of note, body temperature measurement improves the overall sensitivity of the triage process, and widespread testing for SARS-CoV-2 infection should be implemented to identify asymptomatic carriers
Regional lung recruitability during pneumoperitoneum depends on chest wall elastance - A mechanical and computed tomography analysis in rats
Laparoscopic surgery has been increasingly used as an alternative to open surgery for its well-known post-operative benefits. However, it is associated to intra-operative respiratory impairment (Valenza et al., 2010). Mechanical ventilation management is a challenge for the anesthetist in this scenario of intra-abdominal hypertension, because it is not clear how the modification of the ventilation parameters affects the different components of the respiratory system.
The respiratory system is composed of two elastic elements in series: the lung and the chest wall. The latter, in turn, is made up of two parallel components: the rib cage and the diaphragm, which is also part of the abdominal wall. Disregarding airflow resistances, the positive pressure applied to the respiratory system during mechanical ventilation distends all these elements. How the applied pressure is distributed within the respiratory system depends on the compliance of each single element (Cortes-Puentes et al., 2015) and its distribution within the lungs depends on the compliance of the lung zones, i.e., regional compliance (Mutoh et al., 1991; Lowhagen et al., 2010)
Recommended from our members
Aligning Monitoring and Compliance Requirements in Evolving Business Networks
Dynamic business networks (BNs) are intrinsically characterised by change. Compliance requirements management, in this context, may become particularly challenging. Partners in the network may join and leave the collaboration dynamically and tasks over which compliance requirements are specified may be consequently delegated to new partners or backsourced by network participants. This paper considers the issue of aligning the compliance requirements in a BN with the monitoring requirements they induce on the BN participants when change (or evolution) occurs. We first provide a conceptual model of BNs and their compliance requirements, introducing the concept of monitoring capabilities induced by compliance requirements. Then, we present a set of mechanisms to ensure consistency between the monitoring and compliance requirements when BNs evolve, e.g. tasks are delegated or backsourced in-house. Eventually, we discuss a prototype implementation of our framework, which also implements a set of metrics to check the status of a BN in respect of compliance monitorability
Using Relational Verification for Program Slicing
Program slicing is the process of removing statements from a program such that defined aspects of its behavior are retained. For producing precise slices, i.e., slices that are minimal in size, the program\u27s semantics must be considered. Existing approaches that go beyond a syntactical analysis and do take the semantics into account are not fully automatic and require auxiliary specifications from the user. In this paper, we adapt relational verification to check whether a slice candidate obtained by removing some instructions from a program is indeed a valid slice. Based on this, we propose a framework for precise and automatic program slicing. As part of this framework, we present three strategies for the generation of slice candidates, and we show how dynamic slicing approaches - that interweave generating and checking slice candidates - can be used for this purpose. The framework can easily be extended with other strategies for generating slice candidates. We discuss the strengths and weaknesses of slicing approaches that use our framework
Low temperature method for the production of calcium phosphate fillers
BACKGROUND: Calcium phosphate manufactured samples, prepared with hydroxyapatite, are used as either spacers or fillers in orthopedic surgery, but these implants have never been used under conditions of mechanical stress. Similar conditions also apply with cements. Many authors have postulated that cements are a useful substitute material when implanted in vivo. The aim of this research is to develop a low cristalline material similar to bone in porosity and cristallinity. METHODS: Commercial hydroxyapatite (HAp) and monetite (M) powders are mixed with water and compacted to produce cylindrical samples. The material is processed at a temperature of 37â120 degrees C in saturated steam to obtain samples that are osteoconductive. The samples are studied by X-ray powder diffraction (XRD), Vickers hardness test (HV), scanning electron microscopy (SEM), and porosity evaluation. RESULTS: The X-ray diffractions of powders from the samples show patterns typical of HAp and M powders. After thermal treatment, no new crystal phase is formed and no increase of the relative intensity of the peaks is obtained. Vicker hardness data do not show any relationship with treatment temperature. The total porosity decreases by 50â60% according to the specific thermal treatment. Scanning electron microscopy of the surfaces of the samples with either HAp 80%-M 20% (c) or Hap 50%-M 50% (f), show cohesion of the powder grains. CONCLUSIONS: The dissolution-reprecipitation process is more intesive in manufactured samples (c) and (f), according to Vickers hardness data. The process occurs in a steam saturated environment between 37 degrees and 120 degrees C. (c) (f) manufactured samples show pore dimension distributions useful to cellular repopulation in living tissues
Androgen regulation of the androgen receptor coregulators
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Seven Paradoxes of Business Process Management in a Hyper-Connected World
Abstract
Business Process Management is a boundary-spanning discipline that aligns operational capabilities and technology to design and manage business processes. The Digital Transformation has enabled human actors, information systems, and smart products to interact with each other via multiple digital channels. The emergence of this hyper-connected world greatly leverages the prospects of business processes â but also boosts their complexity to a new level. We need to discuss how the BPM discipline can find new ways for identifying, analyzing, designing, implementing, executing, and monitoring business processes. In this research note, selected transformative trends are explored and their impact on current theories and IT artifacts in the BPM discipline is discussed to stimulate transformative thinking and prospective research in this field
- âŠ