
Comuzzi, M., Kotsokalis, C., Spanoudakis, G. & Yahyapour, R. (2009). Establishing and Monitoring

SLAs in complex Service Based Systems. In: E. Damiani, J. Zhang & R. Chang (Eds.), 2009 IEEE

International Conference on Web Services. Los Alamitos, California, I & II. (pp. 783-790). IEEE.

ISBN 9780769537092

City Research Online

Original citation: Comuzzi, M., Kotsokalis, C., Spanoudakis, G. & Yahyapour, R. (2009).

Establishing and Monitoring SLAs in complex Service Based Systems. In: E. Damiani, J. Zhang &

R. Chang (Eds.), 2009 IEEE International Conference on Web Services. Los Alamitos, California, I

& II. (pp. 783-790). IEEE. ISBN 9780769537092

Permanent City Research Online URL: http://openaccess.city.ac.uk/12617/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42629296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Establishing and Monitoring SLAs in complex Service Based Systems

Marco Comuzzi
a
, Constantinos Kotsokalis

b
, George Spanoudakis

a
, and Ramin Yahyapour

b

a
City University London,

b
Dortmund University of Technology

{sbbd286, G.Spanoudakis}@soi.city.ac.uk

{constantinos.kotsokalis, ramin.yahyapour}@udo.edu

Abstract

In modern service economies, service provisioning needs

to be regulated by complex SLA hierarchies among

providers of heterogeneous services, defined at the

business, software, and infrastructure layers. Starting

from the SLA Management framework defined in the

SLA@SOI EU FP7 Integrated Project, we focus on the

relationship between establishment and monitoring of

such SLAs, showing how the two processes become tightly

interleaved in order to provide meaningful mechanisms

for SLA management. We first describe the process for

SLA establishment adopted within the framework; then,

we propose an architecture for monitoring established

SLAs, which satisfies the two main requirements

introduced by SLA establishment: the availability of

historical data for evaluating SLA offers and the

assessment of the capability to monitor the terms in a SLA

offer.

1. Introduction
IT−supported service provisioning has become

relevant in most industries and domains, including, for

instance B2B and B2C commerce, banking,

telecommunications. Organizations often package their

offers as consumable services encapsulating discrete

functionalities along the whole typical business/IT service

stack [1], what has been named Software as a Service. In

recent years, virtualization and autonomic computing

have also allowed the provisioning of infrastructure

resources as well-defined discrete services. Virtualization,

in particular, allows an infrastructure provider to package

a set of resources, e.g. computing, memory, storage, in an

isolated virtual machine, which can be allocated for the

execution of higher-level services to accommodate

business customers’ requirements. Such offerings are

referred to as Infrastructure as a Service or, more

typically, Cloud Computing [2].

Therefore, we see the emergence of a vivid service

economy, where business customers can purchase high-

level business service bundles, relying on software

services and on virtual infrastructure services. The

establishment of the business relationships and the

business/software/infrastructure service chains required to

support the expanding service-based economy, however,

makes it necessary to provide service consumers of all

layers with certainty regarding the quality offered by each

service, be it business, software or infrastructure. Such

certainty traditionally comes in the form of contracts, and

Service Level Agreements (SLAs) are the instruments to

model such contracts in the digital world. SLAs specify

the conditions under which a certain service is provided

by a provider to a customer. Provisioning of service

hierarchies therefore implies similar dynamic and

complex SLA hierarchies, established within and across

the boundaries of organizations.

A service provisioning infrastructure should allow the

establishment of SLA hierarchies through coordinated

negotiations among the potential stakeholders. However,

SLA establishment can only partially serve the needs of

SLA management if not linked to SLA monitoring. This

paper explicates the link between SLA negotiation and

SBS monitoring in the context of the SLA Management

framework developed by the SLA@SOI Project. SLA

negotiation and monitoring involve both the service

consumer and providers, the latter of which develop

models for crafting and evaluating SLA offers and

produce monitoring data during the provisioning of

SLAs. In this paper, we focus specifically on the service

provider side, while the perspective of the service

consumer is part of our future work. In particular, we

show how, during negotiation, service providers require

historical data from monitoring to evaluate SLA offers

made by service customers. We also argue that before an

SLA is established, the capability to monitor terms at

runtime must be confirmed. We then introduce a

monitoring framework which satisfies these requirements.

The rest of the paper is organized as follows. Section 2

introduces the SLA@SOI management framework and a

motivating example for the work presented in the paper.

Section 3 and Section 4 discuss the architecture

developed for SLA Establishment and Monitoring. In

Section 5 we discuss evaluation issues, whereas related

work is revised in Section 6. Finally, conclusions are

drawn in Section 7 along with an outlook on future work.

2. Background
We are researching the issues discussed in this paper

as part of the EU FP7 Integrated Project (IP) SLA@SOI

(http://sla-at-soi.eu/), one of the 6 strategic projects of the

Networked European Software and Services Initiative

(NESSI, http://www.nessi-europe.com/). NESSI is the

cornerstone effort of the European Union to design and

implement a coherent and consistent open service

framework, leveraging research in the area of service-

based systems to consolidate and trigger innovation in

service-oriented economies.

Composite
Service (CS)

Infrastructure
Service (IS1)

Atomic
Service (AS1)

Atomic
Service (AS2)

Infrastructure
Service (IS2)

SLA
Establishment

SLA
Monitoring

SLA Management Framework

SLA
Management

Framework

SLA
Management

Framework

SLA
Management
Framework

SLA

Management

Framework

deployed on

composed by

SLA IS1

SLA AS1

SLA AS2

SLA IS2.1

SLA IS2.2

Business

Consumer

SLA CS

Figure 1: The SLA@SOI SLA management scenario

A general scenario for the SLA management

framework is shown in Figure 1. As shown in the figure,

a generic Composite Service (CS) is provided to one or

more Business Customers. CS is implemented as a

composition of several atomic Services (AS), namely AS1

and AS2. Both CS and ASs are deployed on Infrastructure

Services (ISs), provided using virtualization techniques.

The provisioning of CS to a customer is regulated by an

SLA. From a CS provider perspective, the provisioning of

this SLA is based on a complex hierarchy of SLAs,

established with atomic and infrastructure services. Thus,

the service hierarchy established to implement the

composite service, is reflected on an equally complex

SLA hierarchy, which governs top-level service

consumption and propagates down to the fabric. The

proposed framework is generic in order to accommodate

different real-world scenarios, including both intra- and

inter-domain SLAs.

Independent of the exact use case, the entire set of

SLAs that needs to be enforced guarantees the quality of

the top-level customer experience, just like service

composition enables offering the service to this user in

the first place.

3. Dynamic SLAs
When referring to dynamic SLAs, we stress the fact

that these are not static, predefined contracts. Instead,

they can be a) customized before signing, b) negotiated

on their content, and c) renegotiated if the customer and

the provider wish to do so. Customization of a SLA refers

to the modification of the SLA template which is defined

and offered by the service provider, as an indication of

the acceptable guarantees that may be included in the

contract content. We refer to these guarantees as

agreement terms, adopting the terminology of the Open

Grid Forum’s Web Services Agreement (WS-Agreement)

specification [3]. Negotiation and renegotiation is the

phase when the consumer and the provider try to actually

reach an agreement on the values for these guarantees and

the SLA as a whole, through structured message

exchange. During these phases, the two parties are

applying their knowledge, assumptions and business

axioms, with the purpose of optimizing some utility

function that quantifies the value of the contract for them.

3.1. Agreement Terms
As an instrument for showing the explicit relationship

between negotiating and monitoring service guarantees,

below we outline some formal definitions of Quality of

Service (QoS) properties that are commonly adopted in

literature for software services, e.g. [4, 5, 6].

Availability: Assuming service S; time T1 as the

beginning of monitoring time; time T2 as the time of

evaluating availability; monitoring duration T = T2-T1; bi

as a time when S could not be invoked any more, by all of

its (established or potential) customers, due to reasons

other than network connectivity, where T1 ≤ bi ≤ T2; ei as

the moment when S became usable again following bi,

where T1 ≤ ei ≤ T2; di = ei-bi; d = ∑di; we then define

availability for service S as A=(T-d)/T.

Accessibility: Assuming operation O of service S; time

T1 as the beginning of monitoring time; time T2 as the

time of evaluating accessibility; monitoring duration T =

T2-T1; Ra as the number of all invocations to O during

time T; Rd as the number of invocations that were not

served (i.e. were dropped) during time T; we then define

accessibility for operation O as CO=(Ra-Rd)/Ra.

Throughput: Assuming operation O of service S; time

unit t; request arrival rate R = N/t, N=number of requests

per time unit t, N ∈ ; accessibility C=1 for R = R1;

accessibility C<1 for R = R2, R2 > R1; we then define

throughput for operation O as HO = R1/t.

Completion Time and Average Completion Time: Let

us assume operation O of service S; request message MQ

of a client to the service S for the invocation of operation

O; response message MR; MQ received in full on the

service end at time tI; MR put on the wire in full at time tO;

we then define Completion Time of operation O as TCO =

tO-tI. Assuming a series of Completion Time

measurements by the monitoring infrastructure, TCO1, …,

TCOn, we define Average Completion Time as TAO=

(∑TCOi)/n.

Mean Time To Repair: Assuming service S; a moment

in time, tb, that the service becomes unavailable; the

respective moment in time, te, that it becomes available

again; the period (duration) of unavailability, t = te-tb; a

series of such periods, T = (t1, t2, …, tn) as captured by

monitoring infrastructure; the total unavailability time u =

∑ti; we then define MTTR=u/n.

Mean Time To Failure: Assuming service S; a

restoration after failure for this service, taking place at

time tb; the consecutive failure of the service, starting at

time te; the respective period of availability t = te-tb; a

series of such periods, T = (t1, t2, …, tn) as captured by

monitoring infrastructure; the total duration of service

availability, u = ∑ti; we then define MTTF=u/n.

The above list is not meant to be exhaustive, but serves

as a proof of the strong link between the terms under

negotiation and the monitoring infrastructure, using QoS

terms common in scientific and technical literature. In

fact, it shows that it is not possible to define the terms at

all, without using monitoring artifacts, such as the time at

which monitoring starts, or events captured during service

provisioning including, for instance, Web service

invocations and responses. Therefore, it is not reasonable

to assume that we can calculate negotiable values for

these terms without having historical monitoring data to

rely on, or otherwise, some software design which defines

deterministically the performance of a service for every

possible input. As will be discussed later in this paper,

this argument is further extended in our monitoring

framework: It is not reasonable to negotiate on a term at

all, without confirming with the monitoring subsystem

that the term can be monitored.

As an example for the SLA hierarchy, let us use the

scenario of Figure 1 and assume that AS2 follows the

execution of AS1, as a sequential workflow,

implementing CS1. The latter represents a business

process that produces revenue of M financial units for the

customer, every time it is executed. Suppose that the

guarantee offered by the provider CS to the end-customer

is that there will not be a revenue loss of more than N

financial units, due to CS malfunction. Such malfunction

may be interpreted as reduced service availability /

accessibility, or increased completion time (which results

in long queues and departing customers). The SLAs

between the service provider of CS and those of AS1 and

AS2 will then use these software terms, appropriately

calculated and negotiated, to ensure proper execution of

CS according to the top-level SLA. Additionally, the

SLAs between the service providers of CS, AS1 and AS2

with their corresponding infrastructure providers (i.e.,

those of IS1 and IS2) will typically include guarantees on

the number of virtual machines allocated to these

services, the memory provided, etc. Additionally, they

may include guarantees on the reaction time for scaling

the provided infrastructure, when its load increases over a

predefined threshold. This last term is, again, impossible

to negotiate if the infrastructure provider cannot monitor

virtual machine utilization load, while the reaction time

may be indicated by the provider’s SLA history.

3.2. Negotiation and Renegotiation
The lifecycle of a single SLA starts with its

negotiation. In this phase, the service provider and the

customer exchange messages in order to agree on a well-

defined set of guarantees governing service consumption

by the specific customer. Guarantees may refer to

interdependent obligations of both parties. This may

include, for instance, the minimum performance of the

service (provider side) as long as the invocation rate

remains under a certain threshold (customer side). The

multi-round negotiation process for establishing an SLA

is illustrated in Figure 2 [7].

Figure 2: Negotiation process

As already mentioned, during the negotiation phase,

both parties are using their knowledge and assumptions

for maximizing their profit and the value of the SLA at

hand. The exact utility function to be optimized may be

different for each party in the negotiation, for each

business domain that SLA negotiation may be applied to,

or even perhaps for different entities of the same kind in

the same domain (e.g., two different cloud-computing

providers). Therefore, trying to find a universal solution

to the problem of optimal contracting is not possible.

Additionally, assuming an SLA hierarchy as the one

shown in Figure 1, it becomes clear that it is not possible

to define uniquely and universally an algorithm for the

hierarchy’s construction and decomposition for any

possible agreement term (although, there have been

efforts to decompose performance terms in a uniform

way, e.g. [8]). To address the issue of optimal SLA

hierarchy construction, SLA@SOI has employed a large

number of different industrial use cases, and will apply

the produced framework on them. Through simulation

and real-life testing, it is expected to see how different

negotiation strategies affect the final contracts in different

domains.

One source of existing knowledge, however, that

providers should use, is monitoring information from

previous consumption of the same service. Overall, we

always assume that the provider prefers establishing

SLAs with reasonable certainty regarding the offered QoS

as a function of the agreement terms, than paying back

penalties (as they are defined in the SLA) when

deviations occur. Therefore, the provider is expected to

utilize historical monitoring information for estimating

which terms can indeed be guaranteed with reasonable

certainty. Figure 3 illustrates the aforementioned reliance

on the monitoring framework from a provider’s point of

view, showing only one round of these repeated

negotiation steps. The grayed boxes show this

relationship explicitly. It should also be noted that Figure

3 assumes that the agreement initiator (as defined in WS-

Agreement) is the customer, and the agreement responder

is the provider.

At the same time, service-based systems are highly

dynamic. As such, conditions constantly change.

Infrastructure that was available at the time of

negotiation, for example, may become unavailable during

the SLA runtime. Furthermore, concurrent use of

hardware or virtual resources results in dependencies

between the different SLAs of the provider. Thus, it is

often necessary to adjust, re-provision, or eventually,

renegotiate SLAs. This process is triggered by

monitoring, using events indicating the violation of SLA

guarantee terms to which the service provider subscribes,

as discussed in the following section.

4. SLA Monitoring
As shown in Figure 3, SLA negotiation introduces two

requirements for SLA monitoring:
1. Monitoring should allow the collection of SLA

violations during the provisioning of a service under

the terms of an SLA. On the Provider side, such

violations should be made available as historical data

to SLA negotiation, for optimization and planning

while deciding whether to accept or not a SLA offer

made by the customer;

2. Monitoring should be able to assess the monitorability

of the guarantee terms specified in a SLA offer made

by an agreement initiator to an agreement responder.

This is necessary since auditing and enforcing an SLA

that has non-monitorable guarantee terms would not

be feasible.

The first of these requirements is a typical functional

requirement for any generic software system monitoring

component [9]. However, in loosely coupled and

heterogeneous SLA management scenarios, as the one

introduced in Section 2, the realization of the requirement

requires advanced monitoring mechanisms. The latter

should support the clear specification of the monitoring

capabilities for the different components of the service

based system and their infrastructures, and protocols for

monitoring delegation, availability of primitive

monitoring information and dissemination of monitoring

results. These issues are discussed in more detail later.

The second requirement, regarding the assessment of

the monitorability of SLA terms before SLA

establishment, is even more challenging and it has not

been addressed by previous work on SBS/SLA

monitoring. Thus, it represents one of the main

contributions of our approach to SLA monitoring.

The architecture of the SLA monitoring framework of

SLA@SOI is shown in Figure 4. As shown in the figure,

the architecture consists of four main modules, namely an

Event Bus, a Monitoring Terms Derivation module, a

Terms Verification module, and Monitor Engine.

Figure 3: Negotiation from the provider's side

4.1 Components of the monitoring framework
The role and function of the components of the

SLA@SOI monitoring framework are as follows:

Event Bus. The architecture of the SLA@SOI monitoring

framework is event-based [10], i.e., it relies on capturing

runtime information during SLA provisioning at the

different services of the managed SBS by suitable event

captors and making it available to different components

of the monitoring framework as events. The exchange of

events between the monitor and the event captors

(internal to a node or from external nodes) is managed

through an Event Bus that realizes a publish/subscribe

architecture. In this architecture, event captors are event

publishers and monitors are event subscribers and

consumers. More specifically, event captors publish their

events to the bus with appropriate tags enabling it to

distribute them to monitors that have subscribed to them.

Based on these events the monitors can detect violations

of the terms of SLAs. Note, however, that monitors can

also act as event publishers themselves notifying their

results as events as well (events of this type will be

referred as “monitoring result events” in the following).

Thus, it is possible to use the framework to coordinate

different monitors in various formations (hierarchical,

peer-to-peer etc) as required for the particular SLAs that

need to be monitored and/or other constraints of the

overall SBS infrastructure.

Event

Receiver

SLA Violations

DB

SLA Violations

DB

Monitor

Engine

SLA Monitoring

Terns Verification

Monitoring Terms

Derivation

Verification

Engine

Capability

Manager

Event Bus

SLA Negotiation

Event

Captors

Push

events

Register

Capabilities

Capability

Manager

Other services of the SLA Management framework

SLA

Event

Captors

Monitor

Engine

Push Monitoring

Result events

Figure 4: SLA monitoring architecture

Monitoring Terms Derivation Module. The role of this

module is to translate the agreed guarantee terms of an

SLA into specifications of patterns of events and

computations over their features that can be checked at

runtime. In the prototype implementation of the

framework the language that is used to express the

monitorable event patterns is EC-Assertion, i.e., an XML

language based on Event-Calculus [10]. This is because

the default monitor of the SLA@SOI monitoring

framework is the EVEnt REaSoning Toolkit (EVEREST)

[11] that supports this language. Note, however, that the

architecture of the monitoring framework allows the

integration of other Monitoring Terms Derivation

Modules to support different languages for expressing

guarantee terms and monitors.

Monitor Engine. Monitoring service based systems has

been an area of focus lately and several systems have

been proposed for monitoring composite or atomic

services, e.g. [12], and service infrastructures, e.g.

Ganglia (http://ganglia.info). In our approach, SLA

monitoring in each node may adopt a different Monitor

Engine. The logic implemented by the Monitoring Terms

Derivation module will then change according to the kind

of properties/rules required by the adopted Monitor

Engine. Detected SLA violations are stored in the SLA

Violations DB, which is queried by SLA Negotiation

when historical data are required for accepting/refusing a

SLA offer.

Terms Verification Module. This module implements

the main functionality required for assessing terms'

monitorability. It receives as input the Monitoring terms,

as obtained from the translation made by the Monitoring

Terms Derivation, and assesses whether the terms can be

monitored through a call to the Capability Manager.

Monitoring capabilities and the Capability Manager

functionality are described in Section 4.2.

As discussed previously, the provision of runtime

events to the SLA Monitoring framework is based on

Event Captors. Event Captors are able to capture events

generated by the SLA provisioning environment, and may

be implemented differently depending on the entity that

they need to provide information for.

Event captors may, for example, be realized as

instrumented BPEL processes in the case of composite

software services implemented by BPEL service

coordination workflows, which during execution can emit

the required events [12] and state of the executing

workflow. Service invocations and matching responses

are typical examples of events that can be captured at the

BPEL process execution level. Such events are required,

for instance, for monitoring the Completion Time

agreement term as defined in Section 3.1. In other cases

they may be realized as service container/proxies that

capture service calls and responses [9]. At the

infrastructure layer, specialized event captors may also be

deployed. Virtual machines may, for instance, have their

own mechanisms for monitoring Availability, MTBF, or

MTTR. Alternatively, they may be able to capture events

informing the monitor engine when a service becomes

unavailable, and when it becomes available again. We

therefore implicitly extend the SLA hierarchy to a

hierarchy of rules for constructing events, based on which

we can monitor higher-layer SLAs using in a

straightforward manner the SLAs that constitute them.

Note that, regardless of their implementation, event

captors need to timestamp the events that they generate

and, depending on the consumer of these events, even

synchronize their clocks with the clock of a reference

monitor [13]. Time stamping is critical for monitoring

SLAs as most of the terms in them need to be expressed

in relation to time (see the Completion Time, Throughput,

and Accessibility agreement terms defined in Section 3,

for example).

4.2 Monitoring capabilities and monitorability

assessment
The assessment of the monitorability of SLA terms

relies on the definition of the monitoring capabilities of

each service involved in the SLA Management

Framework. The Monitoring Capabilities of a service are

defined as the collection of (i) the Events that can be

produced by its local Event Captors and (ii) the

Monitoring Result Events that can be produced by its

Monitor Engine, that is, the kind of agreement terms a

service may locally monitor if requested to do so. The

exchange of monitoring capabilities between two services

in the SLA management framework is implemented as the

exchange of (XML-based) monitoring capabilities

documents among the Capability Managers of the two

services.

Because of SLA hierarchies, we envisage the process

of exchanging capabilities to be hierarchical.

As an example, based on the scenario of Figure 1, we

show how CS can assess the monitorability of the terms

in an offer for SLA_CS submitted by the customer. In

order to assess the monitorability of the terms in this

offer, CS must be made aware of the monitoring

capabilities of other services in the SLA hierarchy, i.e.

IS1, IS2, AS1, and AS2. However, a service in the SLA

management framework can be aware only of its peers,

that is, the other services with which it is negotiating an

SLA. In our example, IS1, AS1, and AS2 are the peers of

CS, whereas IS2 is a peer for both AS1 and AS2.

Therefore, CS first requests the monitoring capability

documents to its peers, i.e. IS1, AS1, and AS2. While IS1

can immediately reply with its monitoring capabilities,

since it has no peers down the SLA hierarchy, AS1 and

AS2 first issue a request for the monitoring capabilities

document to their peer, i.e. IS2. The capability document

sent back by AS1 and AS2 to CS includes also the

monitoring capabilities of IS2. In this way, after

monitoring capabilities documents have been exchanged,

CS is aware of the monitoring capabilities of its peers. It

should be noted that the exchange of monitoring

capabilities triggered by the top-level SLA (i.e. SLA_CS

in our example), which is negotiated with the consumer,

enables also all the other services to assess the

monitorability of terms in other SLAs down the

hierarchy. Therefore, each service is able to assess the

monitorability of terms in an SLA offer. For instance,

AS1 can now assess the monitorability of SLA_AS1

offers, since it is aware of IS1’s monitoring capabilities.

When a service receives an SLA offer, the generated

Monitoring Terms are submitted to the Terms

Verification module. The Terms Verification module will

retrieve the (hierarchically defined) monitoring

capabilities from its Capability Manager. Then, for each

term, the Terms Verification module verify whether (i)

events required for monitoring the term are available or

(ii) the monitoring of the term can be delegated to another

service in the hierarchy.

In case (i), the term will be monitored locally by the

service, consuming the required events that will be

published on the bus by Event Captors (local and from

other peer services). In case (ii), the monitoring of the

term can be delegated to another service down the

hierarchy. If the monitoring of a term can not be

performed locally, i.e. required events are not available

according to the exchanged monitoring capability

documents, or delegated to other services, the SLA

monitoring will notify the SLA negotiation that the term

can not be monitored. Therefore, the agreement offer will

be rejected (or modified for further negotiation steps).

SLA Negotiation SLA Monitoring

Receive

SLA Offer

Submit Terms

to Monitoring

Receive

Monitorability Assessment

Query SLA

Violations DB

Assess Terms

Monitorability

Modify Offer

(e.g. drop terms)

Accept

Offer

Receive

Historical data

Retrieve

historical data

Start

Monitoring

Figure 5: Interactions between SLA negotiation and

monitoring

At runtime, when the SLA is provisioned, the Event

Bus of the service will subscribe to the events required

for monitoring or to the correspondent Monitoring Result

event registered by other services, to which the

monitoring of some terms has been delegated. A service’s

Monitor Engine, e.g. CS’s in our example, will then start

receiving the events to which it has subscribed. Generic

events are processed by the Monitor Engine to assess

SLA violations, whereas Monitoring Result events are

directly stored by the Event Receiver in the SLA

Violations DB.

As a conclusion, Figure 5 explicates the negotiation-

time offer evaluation flow described in Figure 3, showing

how SLA Negotiation acts as a client of SLA Monitoring,

which exposes three atomic functionalities, i.e. Verify

Monitorability, Retrieve Historical Data, and Start

Monitoring. On the one hand, Verify Monitorability

fulfills the requirement (2) identified in Section 4, i.e. the

need for assessing the monitorability of agreement terms

in an SLA offer, according to the exchange of monitoring

capabilities previously described. On the other hand,

Retrieve Historical Data and Start Monitoring

functionalities jointly fulfill requirement (1), i.e. making

monitoring data available for the evaluation of SLA

offers. The former functionality, in particular, is

implemented by a set of queries that SLA negotiation may

run on the SLA Violations DB.

5. Evaluation of Design Choices
An initial, rapid prototype of the SLA Management

framework and, in particular, SLA Negotiation and

Monitoring, is available to support a reference scenario of

a retail solution, for which the service and SLA hierarchy

is structured as in Figure 1. A second iteration on the

software stack is prepared and the framework will be

evaluated in real world business use cases, such as e-

government, service aggregator, and financial grids.

For what concerns monitoring, the prototype exploits

the core monitor engine described in [11], while, the

Event Bus is based on a public implementation of the

XMPP-PubSub. The choice to rely on publicly available

specifications of the bus has been made to guarantee

future interoperability with other external event captors.

In the current implementation, the translation of rules is

statically made, In particular, EC rule templates, based on

a set of pre-specified set of events, have been defined for

each type of agreement term defined in Section 3.1.

Templates are instantiated in concrete rules by adding

information on service endpoint references and negotiated

values of agreement terms contained in the SLA. Services

monitoring capabilities are defined by the signatures of

events used in monitoring rules templates. In this way, the

assessment of monitorability is reduced to the problem of

matching the concrete monitoring rules with the

signatures of events reported in monitoring capabilities

documents of services involved in SLA provisioning. The

second iteration of the software stack should remove the

coupling between rule templates and event signatures,

adopting higher-level definitions of event signatures that

could be matched against several formalisms adopted to

express concrete monitoring rules/properties.

With regard to negotiation, the current prototype takes

advantage of monitoring as explained above, to verify

that specific terms can actually be monitored. At the same

time, monitoring information from previous SLAs

provides simple averages that indicate whether a SLA

offer should be accepted or not, based on the service

performance logged in the past. What is currently missing

from this prototype is the capability for multi-round

negotiation, which is necessary in environments such as

the one under discussion. For the time being, a WS-

Agreement implementation has been adopted, providing

single-round interactions with the offers followed by

responses declaring only acceptance or rejection. The

project is actively participating in the Open Grid Forum

and seeks to affect WS-Agreement with regard to full

negotiation capabilities, which will eventually be

implemented as part of the framework.

6. Related Work
SLA negotiation and SLA monitoring have been

heavily researched in the past, but the two research

streams have usually been kept separated. In some cases,

they have been brought together in more unified

architectures, but never viewed in such a way where

negotiation relies on monitoring and vice versa, in a fully

dynamic context taking into account multi-layered SLA

hierarchies.

For what concerns runtime monitoring of SBS,

intrusive monitoring relies on alternating the execution of

the service and monitoring activities at runtime. This can

be done directly in the BPEL engine, interleaving

monitoring code with the process executable code [9].

System properties’ monitorability can not be achieved

with intrusive monitoring, since the properties to be

monitored and the actions required for monitoring must

be interleaved with service execution code and, therefore,

known a priori by the system designer. Non-intrusive

monitoring [10, 15, 12, 16] requires the establishment of

mechanisms for capturing runtime information on service

execution, e.g. service operation calls and responses. In

this way, the business logic of the SBS process and the

monitoring logic remain separate. The cited approaches to

non-intrusive monitoring take for granted the availability

of events required for monitoring and do not consider the

issue of monitorability of rules/properties submitted to a

generic monitor engine. The concept of local monitors

attached to services has been introduced in [27].

However, the proposed approach considers the static

allocation of properties monitoring based on a predefined

service network topology.

A multitude of research papers discuss the topic of

SLA negotiation with some reference to monitoring, but

without exploring it explicitly in the context of a

complete, multi-layer service economy. [17] is using a

“Situation Assessment Module” to evaluate the feasibility

of a SLA based on monitoring info, but only looking at

isolated SLAs. Conversely, [18] and [19] are looking into

SLA hierarchies and negotiation in this context, without

any reference to consultation with monitoring though. In

[20] the authors refer to using events for evaluating the

validity of offers, but without further discussion on using

monitoring for provider-side optimization of the

negotiation process. In [21] a negotiation framework is

presented and decision strategies are mentioned, but

without any explicit links to monitoring information.

Several projects have also focused on SLA definition,

establishment, and provisioning both in the context of

Web and Grid services. Project NextGRID is probably

the one closest to what SLA@SOI is also discussing.

NextGRID foresaw the need for SLA hierarchies [22],

however the monitoring and profiling infrastructure does

not take it into account [23]. Adaptive Services Grid

(ASG) designed an architecture where negotiation uses

profiling data, but not monitoring data from previous

violations. Also, the monitoring rules and parameters are

static and pre-defined [24]. Finally, inter-dependencies of

SLAs are not discussed at all. The TrustCOM project

looked deeply into the subject of SLA negotiation and

monitoring, and also produced a reference

implementation. However, SLA hierarchies and

dependencies are not taken into account, and the problem

is solved for isolated agreements only [25]. The same

holds for AssessGrid, which concentrated on SLAs and

risk management [26]. Also, AssessGrid has a focus on

Grid computing, therefore assuming certain system

organization and architecture, while our approach has a

wider view on autonomic service providers and the

respective service economies.

7. Conclusions and future work

After illustrating and analyzing the explicit link

between SLA negotiation and SLA monitoring, we

presented a novel architecture for establishing and

monitoring SLA hierarchies spanning through multiple

domains and layers of a service economy: Business,

software and infrastructure services. We showed why this

relationship cannot be disregarded, especially in such

complex hierarchies, and how a SLA hierarchy reflects on

the monitoring hierarchy.

Besides applying the framework to industrial use cases

and addressing the open design issues discussed in

Section 5, we also plan to broaden our SLA management

scenario by considering requirements for SLA negotiation

and monitoring on the service consumer side, i.e.

focusing on mechanisms for SLA offer negotiation on the

consumer side and on how consumer-generated

monitoring data may be integrated in the service provider

SLA monitoring framework presented in this paper.

Acknowledgments

The research has been supported by the EU Commission

under the SLA@SOI Project (grant agreement n.

216556).

References
[1] Papazoglou, M.P., Service-Oriented Computing: Concepts,

Characteristics and Directions. Proc. 4th Conference on Web

Information Systems Engineering, 2003.

[2] L. Wang, G. von Laszewski, M. Kunze, J. Tao. Cloud

computing: A Perspective study. Proc. Grid Computing

Environments (GCE) workshop, 2008.

[3] A. Andrieux et al.; Web Services Agreement Specification

(WS-Agreement). The Open Grid Forum, March 2007.

http://www.ogf.org/documents/GFD.107.pdf

[4] Dobson, G. and Sanchez-Macian, A.; Towards Unified

QoS/SLA Ontologies. Services Computing Workshops, SCW

'06, Sept. 2006

[5] Maximilien, E.M. and Singh, M.P.; A framework and

ontology for dynamic Web services selection. IEEE Internet

Computing, 8(5), Sept.-Oct. 2004, pp. 84 – 93.

[6] D. Colling, T. Ferrari, Y. Hassoun, C. Huang, C. Kotsokalis,

A.S. McGough, E. Ronchieri, Y. Patel and P. Tsanakas. On

Quality of Service Support for Grid Computing. Grid Enabled

Remote Instrumentation, Springer US, 2009.

[7] D. Somefun, E. Gerding, S. Bohte, J. La Poutré. Automated

Negotiation and Bundling of Information Goods. Agent-

Mediated Electronic Commerce V, pp.1-17, 2004

[8] Y. Chen, S. Iyer, X. Liu, D. Milojicic, A. Sahai. SLA

Decomposition: Translating Service Level Objectives to System

Level Thresholds. Int. Conf. on Autonomic Computing, 2008.

[9] L. Baresi and S. Guinea. Towards Dynamic Monitoring of

WS-BPEL Processes, Proc. ICSOC 2005.

[10] Spanoudakis G., Mahbub K.: Non Intrusive Monitoring of

Service Based Systems, International Journal of Cooperative

Information Systems, 15 (3), pp. 325-358, 2006.

[11] Spanoudakis G, Kloukinas C. Mahbub K.: The SERENITY

Runtime Monitoring Framework, In Security and Dependability

for Ambient Intelligence, Information Security Series, Springer,

pp. 213-238 (to appear)

[12] F. Barbon, P. Traverso, M. Pistore, M. Trainotti, Run-Time

Monitoring of Instances and Classes of Web Service

Compositions, Proc. IEEE ICWS 2006.

[13] Kloukinas, C., Spanoudakis, G., and Mahbub, K.

Estimating Event Lifetimes for Distributed Runtime

Verification, Proc. SEKE 2008.

[14] Keller, A. and Ludwig, H. 2004. The WSLA Framework:

Specifying and Monitoring Service Level Agreements for Web

Services. J. of Network and Systems Management, 11(1), 57-81.

[15] W.M.P. Van der Aalst, M. Dumas, C. Ouyang, A. Rozinat,

and E. Verbeek, Conformance checking of Service Behavior,

ACM TOIT, 8 (3), May 2008.

[16] O. Moser, F. Rosenberg, and S. Dustdar, Non-intrusive

monitoring and service adaptation for WS-BPEL, WWW 2008.

[17] N. R. Jennings, T. J. Norman, P. Faratin, P. O'Brien, B.

Odgers. Autonomous Agents For Business Process

Management. Applied Artificial Intelligence, 2000, 14, 145-189.

[18] M.B. Chhetri, J. Lin, S. Goh, J.Y. Zhang, R. Kowalczyk, J.

Yan. A Coordinated Architecture for the Agent-based Service

Level Agreement Negotiation of Web Service Composition.

Proc. Australian Software Engineering Conference, 2006.

[19] J. Brzostowski, M.B. Chhetri, R. Kowalczyk. Three

Decision-making Mechanisms to facilitate Negotiation of

Service Level Agreements for Web Service Compositions. Proc.

Joint Conference of the INFORMS Section on Group Decision

and Negotiation, 2007, pp. 37-44.

[20] M.R. Ayatollahzadeh Shirazi, A.A. Barfouroush. A

Conceptual Framework for Modeling Automated Negotiations

in Multiagent Systems. Negotiation Journal, 2008, 24(1), pp. 45-

70.

[21] E. Di Nitto, M. Di Penta, A. Gambi, G. Ripa, M. Villani.

Negotiation of Service Level Agreements: An Architecture and

a Search-Based Approach. Proc. ICSOC 2007, pp. 295-306.

[22] D. Snelling, A. Anjomshoaa, F. Wray, A. Basermann, M.

Fisher, M. Surridge, P. Wieder. NextGRID Architectural

Concepts. Towards Next Generation Grids: Proc. CoreGRID

Symposium, 2007.

[23] K. Tserpes, D. Kyriazis, A. Menychtas, T. Varvarigou, F.

Silvestri, D. Laforenza. An Open Architecture for QoS

Information in Business Grids. Towards Next Generation Grids:

Proc. CoreGRID Symposium, 2007.

[24] K. Jank, Reference Architecture. Adaptive Services Grid

Deliverable D6.V-1, 2005.

[25] The TrustCOM project. Deliverable 64: Final TrustCoM

Reference implementation and associated tools and user manual.

June 2007 (v3.0).

[26] J. Padgett, I. Gourlay, K. Djemame (eds). AssessGrid D1.3:

System Architecture Specification and Developed Scenarios

(v0.30). December 2006.

[27] Machiraju, V., Sahai, A., and van Moorsel, A. Web

Services Management Network: An Overlay Network for

Federated Service Management, Proc. IFIP/IEEE 8th Int.

Symposium on Integrated Management, 2003.

