3,203 research outputs found

    Quantifying stellar radial migration in an N-body simulation: blurring, churning, and the outer regions of galaxy discs

    Full text link
    Radial stellar migration in galactic discs has received much attention in studies of galactic dynamics and chemical evolution, but remains a dynamical phenomenon that needs to be fully quantified. In this work, using a Tree-SPH simulation of an Sb-type disc galaxy, we quantify the effects of blurring (epicyclic excursions) and churning (change of guiding radius). We quantify migration (either blurring or churning) both in terms of flux (the number of migrators passing at a given radius), and by estimating the population of migrators at a given radius at the end of the simulation compared to non-migrators, but also by giving the distance over which the migration is effective at all radii. We confirm that the corotation of the bar is the main source of migrators by churning in a bar-dominated galaxy, its intensity being directly linked to the episode of a strong bar, in the first 1-3 Gyr of the simulation. We show that within the outer Lindblad resonance (OLR), migration is strongly dominated by churning, while blurring gains progressively more importance towards the outer disc and at later times. Most importantly, we show that the OLR limits the exchange of angular momentum, separating the disc in two distinct parts with minimal or null exchange, except in the transition zone, which is delimited by the position of the OLR at the epoch of the formation of the bar, and at the final epoch. We discuss the consequences of these findings for our understanding of the structure of the Milky Way disc. Because the Sun is situated slightly outside the OLR, we suggest that the solar vicinity may have experienced very limited churning from the inner disc.Comment: Accepted for publication in Astronomy and Astrophysics (acceptance date: 27/04/15), 24 pages, 24 figure

    A radio jet drives a molecular and atomic gas outflow in multiple regions within one square kiloparsec of the nucleus of the nearby galaxy IC5063

    Full text link
    We analyzed near-infrared data of the nearby galaxy IC5063 taken with the Very Large Telescope SINFONI instrument. IC5063 is an elliptical galaxy that has a radio jet nearly aligned with the major axis of a gas disk in its center. The data reveal multiple signatures of molecular and atomic gas that has been kinematically distorted by the passage of the jet plasma or cocoon within an area of ~1 kpc^2. Concrete evidence that the interaction of the jet with the gas causes the gas to accelerate comes from the detection of outflows in four different regions along the jet trail: near the two radio lobes, between the radio emission tip and the optical narrow-line-region cone, and at a region with diffuse 17.8 GHz emission midway between the nucleus and the north radio lobe. The outflow in the latter region is biconical, centered 240 pc away from the nucleus, and oriented perpendicularly to the jet trail. The diffuse emission that is observed as a result of the gas entrainment or scattering unfolds around the trail and away from the nucleus with increasing velocity. It overall extends for >700 pc parallel and perpendicular to the trail. Near the outflow starting points, the gas has a velocity excess of 600 km/s to 1200 km/s with respect to ordered motions, as seen in [FeII], Pa alpha, or H2 lines. High H2 (1-0) S(3)/S(1) flux ratios indicate non-thermal excitation of gas in the diffuse outflow.Comment: Accepted for publication in Ap

    Dynamics of a classical Hall system driven by a time-dependent Aharonov--Bohm flux

    Full text link
    We study the dynamics of a classical particle moving in a punctured plane under the influence of a strong homogeneous magnetic field, an electrical background, and driven by a time-dependent singular flux tube through the hole. We exhibit a striking classical (de)localization effect: in the far past the trajectories are spirals around a bound center; the particle moves inward towards the flux tube loosing kinetic energy. After hitting the puncture it becomes ``conducting'': the motion is a cycloid around a center whose drift is outgoing, orthogonal to the electric field, diffusive, and without energy loss

    Why Buckling Stellar Bars Weaken in Disk Galaxies

    Full text link
    Young stellar bars in disk galaxies experience a vertical buckling instability which terminates their growth and thickens them, resulting in a characteristic peanut/boxy shape when viewed edge on. Using N-body simulations of galactic disks embedded in live halos, we have analyzed the bar structure throughout this instability and found that the outer third of the bar dissolves completely while the inner part (within the vertical inner Lindblad resonance) becomes less oval. The bar acquires the frequently observed peanut/boxy-shaped isophotes. We also find that the bar buckling is responsible for a mass injection above the plane, which is subsequently trapped by specific 3-D families of periodic orbits of particular shapes explaining the observed isophotes, in line with previous work. Using a 3-D orbit analysis and surfaces of sections, we infer that the outer part of the bar is dissolved by a rapidly widening stochastic region around its corotation radius -- a process related to the bar growth. This leads to a dramatic decrease in the bar size, decrease in the overall bar strength and a mild increase in its pattern speed, but is not expected to lead to a complete bar dissolution. The buckling instability appears primarily responsible for shortening the secular diffusion timescale to a dynamical one when building the boxy isophotes. The sufficiently long timescale of described evolution, ~1 Gyr, can affect the observed bar fraction in local universe and at higher redshifts, both through reduced bar strength and the absence of dust offset lanes in the bar.Comment: 7 pages, 4 figures, ApJ Letters, in pres

    Dynamical Friction and the Distribution of Dark Matter in Barred Galaxies

    Get PDF
    We use fully self-consistent N-body simulations of barred galaxies to show that dynamical friction from a dense dark matter halo dramatically slows the rotation rate of bars. Our result supports previous theoretical predictions for a bar rotating within a massive halo. On the other hand, low density halos, such as those required for maximum disks, allow the bar to continue to rotate at a high rate. There is somewhat meager observational evidence indicating that bars in real galaxies do rotate rapidly and we use our result to argue that dark matter halos must have a low central density in all high surface brightness disk galaxies, including the Milky Way. Bars in galaxies that have larger fractions of dark matter should rotate slowly, and we suggest that a promising place to look for such candidate objects is among galaxies of intermediate surface brightness.Comment: 6 pages, Latex, 3 figures, Accepted by Ap.J.L., revised copy, includes an added paragrap

    Detection of parent molecules in the IR spectrum of P/Halley with the IKS-Vega spectrometer

    Get PDF
    The two spectroscopic channels of the IKS experiment on board the Vega probes were designed for the detection of emission bands of parent molecules and/or cometary dust, in the 2.5 to 5 micrometer range and the 6 to 12 micron range respectively. On Vega 1, the experiment worked successfully, and cometary spectra were recorded at distances from the comet nucleus ranging from about 250,000 to 40,000 km. The field of view was 1 deg and the spectral resolving power was about 50. On Vega 2, no result could be obtained due to a failure of the cryogenic system. The emission spectra obtained are briefly analyzed

    HCOOCH3 as a probe of temperature and structure of Orion-KL

    Full text link
    We studied the O-bearing molecule HCOOCH3 to characterize the physical conditions of the different molecular source components in Orion-KL. We identify 28 methyl formate emission peaks throughout the 50" field of observations. The two strongest peaks are in the Compact Ridge (MF1) and in the SouthWest of the Hot Core (MF2). Spectral confusion is still prevailing as half of the expected transitions are blended over the region. Assuming that the transitions are thermalized, we derive the temperature at the five main emission peaks. At the MF1 position we find a temperature of 80K in a 1.8"x0.8" beam size and 120K on a larger scale (3.6" x2.2"), suggesting an external source of heating, whereas the temperature is about 130K at the MF2 position on both scales. Transitions of HCOOCH3 in vt=1 are detected as well and the good agreement of the positions on the rotational diagrams between the vt=0 and the vt=1 transitions suggests a similar temperature. The velocity of the gas is between 7.5 and 8.0km/s depending on the positions and column density peaks vary from 1.6x10^16 to 1.6x10^17cm^-2. A second velocity component is observed around 9-10 km/s in a North-South structure stretching from the Compact Ridge up to the BN object; this component is warmer at the MF1 peak. The two other C2H4O2 isomers are not detected and the derived upper limit for the column density is <3x10^14cm^-2 for glycolaldehyde and <2x10^15cm^-2 for acetic acid. From the 223GHz continuum map, we identify several dust clumps with associated gas masses in the range 0.8 to 5.8Msun. Assuming that the HCOOCH3 is spatially distributed as the dust, we find relative abundances of HCOOCH3 in the range <0.1x10^-8 to 5.2x10^-8. We suggest a relation between the methyl formate distribution and shocks as traced by 2.12 mum H2 emission.Comment: Accepted for publication in A&

    Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis

    Full text link
    We investigate schemes for Hamiltonian parameter estimation of a two-level system using repeated measurements in a fixed basis. The simplest (Fourier based) schemes yield an estimate with a mean square error (MSE) that decreases at best as a power law ~N^{-2} in the number of measurements N. By contrast, we present numerical simulations indicating that an adaptive Bayesian algorithm, where the time between measurements can be adjusted based on prior measurement results, yields a MSE which appears to scale close to \exp(-0.3 N). That is, measurements in a single fixed basis are sufficient to achieve exponential scaling in N.Comment: 5 pages, 3 figures, 1 table. Published versio
    corecore