293 research outputs found

    An ecologically valid examination of event-based and time-based prospective memory using immersive virtual reality:The effects of delay and task type on everyday prospective memory

    Get PDF
    Recent research has focused on assessing either event- or time-based prospective memory (PM) using laboratory tasks. Yet, the findings pertaining to PM performance on laboratory tasks are often inconsistent with the findings on corresponding naturalistic experiments. Ecologically valid neuropsychological tasks resemble the complexity and cognitive demands of everyday tasks, offer an adequate level of experimental control, and allow a generalisation of the findings to everyday performance. The Virtual Reality Everyday Assessment Lab (VR-EAL), an immersive virtual reality neuropsychological battery with enhanced ecological validity, was implemented to comprehensively assess everyday PM (i.e., focal and non-focal event-based, and time-based). The effects of the length of delay between encoding and initiating the PM intention and the type of PM task on everyday PM performance were examined. The results revealed that everyday PM performance was affected by the length of delay rather than the type of PM task. The effect of the length of delay differentially affected performance on the focal, non-focal, and time-based tasks and was proportional to the PM cue focality (i.e., semantic relationship with the intended action). This study also highlighted methodological considerations such as the differentiation between functioning and ability, distinction of cue attributes, and the necessity of ecological validity.Comment: 9 Figures, 4 Table

    LCA of Zero Valent Iron Nanoparticles Encapsulated in Algal Biomass for Polishing Treated Effluents

    Get PDF
    Research data produced within the CARIPLO IMAP and Perform Water 2030 projects were processed using the SimaPro software to carry out the Life Cycle Assessment according to ISO 14040-44 of an innovative process of treated effluents' polishing. The study aims to evaluate the integration of a microalgae culture as a side-stream process into the baseline layout of a wastewater treatment plant to remove nitrogen from the supernatant of sludge centrifugation from an environmental perspective. In particular, the investigated system focuses on using the algal biomass produced as an organic matrix for encapsulating zero-valent iron nanoparticles to be used for the final refinement of the effluent. Zero-valent iron (ZVI) is a reactive metal and an effective reducing agent. It can be used to remove organic and inorganic pollutants (e.g., chlorinated organics, pharmaceuticals, metals, textile dyestuffs). The encapsulation of ZVI by hydrothermal carbonization (HTC) in a carbonaceous matrix allows for overcoming the problems related to its lack of stability, easy aggregation, and difficulty in separating the ZVI nanoparticles from the treated solution. The case study refers to Bresso wastewater treatment plant (Milan province, Northern Italy). The environmental performances of the study were assessed following the Life Cycle Impact Assessment methods IMPACT 2002+. According to the results, the new process integration does not affect the environmental performance of the WWTP, still implying a significant improvement in the removal of metals and micropollutants. In fact, due to the ability of ZVI nanoparticles to remove organic and inorganic pollutants, the outflowing load will be significantly reduced, which will improve the environmental performance of the entire Bresso wastewater treatment plant

    Guidelines for the development of immersive virtual reality software for cognitive neuroscience and neuropsychology:The development of Virtual Reality Everyday Assessment Lab (VR-EAL), A neuropsychological test battery in immersive virtual reality

    Get PDF
    International audienceVirtual reality (VR) head-mounted displays (HMD) appear to be effective research tools, which may address the problem of ecological validity in neuropsychological testing. However, their widespread implementation is hindered by VR induced symptoms and effects (VRISE) and the lack of skills in VR software development. This study offers guidelines for the development of VR software in cognitive neuroscience and neuropsychology, by describing and discussing the stages of the development of Virtual Reality Everyday Assessment Lab (VR-EAL), the first neuropsychological battery in immersive VR. Techniques for evaluating cognitive functions within a realistic storyline are discussed. The utility of various assets in Unity, software development kits, and other software are described so that cognitive scientists can overcome challenges pertinent to VRISE and the quality of the VR software. In addition, this pilot study attempts to evaluate VR-EAL in accordance with the necessary criteria for VR software for research purposes. The VR neuroscience questionnaire (VRNQ; Kourtesis et al., 2019b) was implemented to appraise the quality of the three versions of VR-EAL in terms of user experience, game mechanics, in-game assistance, and VRISE. Twenty-five participants aged between 20 and 45 years with 12–16 years of full-time education evaluated various versions of VR-EAL. The final version of VR-EAL achieved high scores in every sub-score of the VRNQ and exceeded its parsimonious cut-offs. It also appeared to have better in-game assistance and game mechanics, while its improved graphics substantially increased the quality of the user experience and almost eradicated VRISE. The results substantially support the feasibility of the development of effective VR research and clinical software without the presence of VRISE during a 60-min VR session

    Fragments Generated during Liquid Hydrogen Tank Explosions

    Get PDF
    Liquid hydrogen (LH2) may be employed to transport large quantities of pure hydrogen or be stored onboard of ships, airplanes and trains fuelled by hydrogen, thanks to its high density compared to gaseous compressed hydrogen. LH2 is a cryogenic fluid with an extremely low boiling point (-253°C at atmospheric pressure) that must be stored in double-walled vacuum insulated tanks to limit the boil-off formation. There is limited knowledge on the consequences of LH2 tanks catastrophic rupture. In fact, the yield of the consequences of an LH2 tank explosion (pressure wave, fragments and fireball) depend on many parameters such as tank dimension, filling degree, and tank internal conditions (temperature and pressure) prior the rupture. Only two accidents provoked by the rupture of an LH2 tank occurred in the past and a couple of experimental campaigns focussed on this type of accident scenario were carried out for LH2. The aim of this study is to analyse one of the LH2 tank explosion consequences namely the fragments. The longest horizontal and vertical ranges of the fragments thrown away from the blast wave are estimated together with the spatial distribution around the tank. Theoretical models are adopted in this work and validated with the experimental results. The proposed models can aid the risk analysis of LH2 storage technologies and provide critical insights to plan a prevention and mitigation strategy and improve the safety of hydrogen applications

    A Methodology for Continuous Monitoring of Rail Corrugation on Subway Lines Based on Axlebox Acceleration Measurements

    Get PDF
    Rail corrugation is a degradation phenomenon that manifests as a quasi-periodic irregularity on the running surface of the rail. It is a critical problem for urban railway lines because it induces ground-borne vibrations transmitted to the buildings near the infrastructure, causing complaints from the inhabitants. A typical treatment to mitigate the rail corrugation problem is the periodic grinding of the rails, performed by dedicated vehicles. The scheduling of rail maintenance is particularly critical because it can be performed only when the service is interrupted. A procedure for the continuous monitoring of rail corrugation is proposed, based on axlebox acceleration measurements. The rail irregularity is estimated from the measured acceleration by means of a frequency domain model of vertical dynamics of the wheel–rail interaction. The results obtained by using two different methods (a state-of-the-art method and a new one) are compared. Finally, the study of the evolution of the power content of the rail irregularity enables the identification of the track sections where corrugation is developing and rail grinding is necessary

    Large Deviation Approach to the Randomly Forced Navier-Stokes Equation

    Full text link
    The random forced Navier-Stokes equation can be obtained as a variational problem of a proper action. By virtue of incompressibility, the integration over transverse components of the fields allows to cast the action in the form of a large deviation functional. Since the hydrodynamic operator is nonlinear, the functional integral yielding the statistics of fluctuations can be practically computed by linearizing around a physical solution of the hydrodynamic equation. We show that this procedure yields the dimensional scaling predicted by K41 theory at the lowest perturbative order, where the perturbation parameter is the inverse Reynolds number. Moreover, an explicit expression of the prefactor of the scaling law is obtained.Comment: 24 page

    A PRELIMINARY FEASIBILITY ANALYSIS ABOUT THE STRUCTURAL HEALTH MONITORING OF RAILWAY CONCRETE SLEEPERS BY ACOUSTIC EMISSION AND DIGITAL IMAGE CORRELATION

    Get PDF
    Railway concrete sleepers are made out of steel reinforced concrete and are a safety critical component of the railway track. Different kinds of failure are observed during service and this requires a maintenance plan involving non-destructive testing. Nevertheless, shifting from a non-destructive approach to structural health monitoring has shown relevant opportunities to increase in-service reliability and to decrease the costs of maintenance. From this point of view, the present paper describes a preliminary feasibility analysis about the application of acoustic emission for detection of cracks in prestressed concrete sleepers. For the purpose of assessment, obtained results are compared with other methods, such as digital image correlation and visual testing. Encouraging results indicate the possibility to carry out more validating tests in order to get the engineering of a suitably cheap monitoring system for in-service applications

    Double-Stranded RNA Targeting Dicer-Like Genes Compromises the Pathogenicity of Plasmopara viticola on Grapevine

    Get PDF
    Downy mildew caused by Plasmopara viticola is one of the most devastating diseases of grapevine, attacking all green parts of the plant. The damage is severe when the infection at flowering stage is left uncontrolled. P. viticola management consumes a significant amount of classical pesticides applied in vineyards, requiring efficient and environmentally safe disease management options. Spray-induced gene silencing (SIGS), through the application of exogenous double-stranded RNA (dsRNA), has shown promising results for the management of diseases in crops. Here, we developed and tested the potential of dsRNA targeting P. viticola Dicer-like (DCL) genes for SIGS-based crop protection strategy. The exogenous application of PvDCL1/2 dsRNA, a chimera of PvDCL1 and PvDCL2, highly affected the virulence of P. viticola. The reduced expression level of PvDCL1 and PvDCL2 transcripts in infected leaves, treated with PvDCL1/2 dsRNA, was an indication of an active RNA interference mechanism inside the pathogen to compromise its virulence. Besides the protective property, the PvDCL1/2 dsRNA also exhibited a curative role by reducing the disease progress rate of already established infection. Our data provide a promising future for PvDCL1/2 dsRNA as a new generation of RNA-based resistant plants or RNA-based agrochemical for the management of downy mildew disease in grapevine

    Validation of the Virtual Reality Neuroscience Questionnaire:Maximum duration of immersive virtual reality sessions without the presence of pertinent adverse symptomatology

    Get PDF
    International audienceThere are major concerns about the suitability of immersive virtual reality (VR) systems (i.e., head-mounted display; HMD) to be implemented in research and clinical settings, because of the presence of nausea, dizziness, disorientation, fatigue, and instability (i.e., VR induced symptoms and effects; VRISE). Research suggests that the duration of a VR session modulates the presence and intensity of VRISE, but there are no suggestions regarding the appropriate maximum duration of VR sessions. The implementation of high-end VR HMDs in conjunction with ergonomic VR software seems to mitigate the presence of VRISE substantially. However, a brief tool does not currently exist to appraise and report both the quality of software features and VRISE intensity quantitatively. The Virtual Reality Neuroscience Questionnaire (VRNQ) was developed to assess the quality of VR software in terms of user experience, game mechanics, in-game assistance, and VRISE. Forty participants aged between 28 and 43 years were recruited (18 gamers and 22 non-gamers) for the study. They participated in 3 different VR sessions until they felt weary or discomfort and subsequently filled in the VRNQ. Our results demonstrated that VRNQ is a valid tool for assessing VR software as it has good convergent, discriminant, and construct validity. The maximum duration of VR sessions should be between 55 and 70 min when the VR software meets or exceeds the parsimonious cut-offs of the VRNQ and the users are familiarized with the VR system. Also, the gaming experience does not seem to affect how long VR sessions should last. Also, while the quality of VR software substantially modulates the maximum duration of VR sessions, age and education do not. Finally, deeper immersion, better quality of graphics and sound, and more helpful in-game instructions and prompts were found to reduce VRISE intensity. The VRNQ facilitates the brief assessment and reporting of the quality of VR software features and/or the intensity of VRISE, while its minimum and parsimonious cut-offs may appraise the suitability of VR software for implementation in research and clinical settings. The findings of this study contribute to the establishment of rigorous VR methods that are crucial for the viability of immersive VR as a research and clinical tool in cognitive neuroscience and neuropsychology

    A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary

    Full text link
    In this paper we propose a method of finding the initial equilibrium configuration of cable structures discretized by finite elements applied to the shape-finding of the railway overhead system. Absolute nodal coordinate formulation finite elements, which allow for axial and bending deformation, are used for the contact and messenger wires. The other parts of the overhead system are discretized with non-linear bars or equivalent springs. The proposed method considers the constraints introduced during the assembly of the catenary, such as the position of droppers, cable tension, and height of the contact wire. The formulation is general and can be applied to different catenary configurations or transitions both in 2D and 3D with straight or curved track paths. A comparison of the results obtained for reference catenaries in the bibliography is also included.The authors wish to thank Generatitat Valenciana for the financial support received in the framework of the Programme PROME-TEO 2012/023.Tur Valiente, M.; GarcĂ­a, E.; Baeza GonzĂĄlez, LM.; Fuenmayor FernĂĄndez, FJ. (2014). A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Engineering Structures. 71:234-243. https://doi.org/10.1016/j.engstruct.2014.04.015S2342437
    • 

    corecore