22,112 research outputs found
On induced birefringence in viscoelastic materials
Describing induced birefringence in viscoelastic materials based on constitutive assumptions for stress and dielectric propertie
What can we learn from Dijet suppression at RHIC?
We present a systematic study of the dijet suppression at RHIC using the
VNI/BMS parton cascade. We examine the modification of the dijet asymmetry A_j
and the within-cone transverse energy distribution (jet-shape) along with
partonic fragmentation distributions z and j_t in terms of: qhat; the path
length of leading and sub-leading jets; cuts on the jet energy distributions;
jet cone angle and the jet-medium interaction mechanism. We find that A_j is
most sensitive to qhat and relatively insensitive to the nature of the
jet-medium interaction mechanism. The jet profile is dominated by qhat and the
nature of the interaction mechanism. The partonic fragmentation distributions
clearly show the jet modification and differentiate between elastic and
radiative+elastic modes
Prediction of stable walking for a toy that cannot stand
Previous experiments [M. J. Coleman and A. Ruina, Phys. Rev. Lett. 80, 3658
(1998)] showed that a gravity-powered toy with no control and which has no
statically stable near-standing configurations can walk stably. We show here
that a simple rigid-body statically-unstable mathematical model based loosely
on the physical toy can predict stable limit-cycle walking motions. These
calculations add to the repertoire of rigid-body mechanism behaviors as well as
further implicating passive-dynamics as a possible contributor to stability of
animal motions.Comment: Note: only corrections so far have been fixing typo's in these
comments. 3 pages, 2 eps figures, uses epsf.tex, revtex.sty, amsfonts.sty,
aps.sty, aps10.sty, prabib.sty; Accepted for publication in Phys. Rev. E.
4/9/2001 ; information about Andy Ruina's lab (including Coleman's, Garcia's
and Ruina's other publications and associated video clips) can be found at:
http://www.tam.cornell.edu/~ruina/hplab/index.html and more about Georg
Bock's Simulation Group with whom Katja Mombaur is affiliated can be found at
http://www.iwr.uni-heidelberg.de/~agboc
Probabilistic Approach to Time-Dependent Load-Transfer Models of Fracture
A probabilistic method for solving time-dependent load-transfer models of
fracture is developed. It is applicable to any rule of load redistribution,
i.e, local, hierarchical, etc. In the new method, the fluctuations are
generated during the breaking process (annealed randomness) while in the usual
method, the random lifetimes are fixed at the beginning (quenched disorder).
Both approaches are equivalent.Comment: 13 pages, 4 figures. To appear in Phys.Rev.
Extending Elliptic Curve Chabauty to higher genus curves
We give a generalization of the method of "Elliptic Curve Chabauty" to higher
genus curves and their Jacobians. This method can sometimes be used in
conjunction with covering techniques and a modified version of the Mordell-Weil
sieve to provide a complete solution to the problem of determining the set of
rational points of an algebraic curve .Comment: 24 page
Affine Lie Algebras in Massive Field Theory and Form-Factors from Vertex Operators
We present a new application of affine Lie algebras to massive quantum field
theory in 2 dimensions, by investigating the limit of the q-deformed
affine symmetry of the sine-Gordon theory, this limit occurring
at the free fermion point. Working in radial quantization leads to a
quasi-chiral factorization of the space of fields. The conserved charges which
generate the affine Lie algebra split into two independent affine algebras on
this factorized space, each with level 1 in the anti-periodic sector, and level
in the periodic sector. The space of fields in the anti-periodic sector can
be organized using level- highest weight representations, if one supplements
the \slh algebra with the usual local integrals of motion. Introducing a
particle-field duality leads to a new way of computing form-factors in radial
quantization. Using the integrals of motion, a momentum space bosonization
involving vertex operators is formulated. Form-factors are computed as vacuum
expectation values in momentum space. (Based on talks given at the Berkeley
Strings 93 conference, May 1993, and the III International Conference on
Mathematical Physics, String Theory, and Quantum Gravity, Alushta, Ukraine,
June 1993.)Comment: 13 pages, CLNS 93/125
Dynamical confinement in bosonized QCD2
In the bosonized version of two dimensional theories non trivial boundary
conditions (topology) play a crucial role. They are inevitable if one wants to
describe non singlet states. In abelian bosonization, color is the charge of a
topological current in terms of a non-linear meson field. We show that
confinement appears as the dynamical collapse of the topology associated with
its non trivial boundary conditions.Comment: 11 pages, figures not included, ftuv/92-
Chain Inflation in the Landscape: "Bubble Bubble Toil and Trouble"
In the model of Chain Inflation, a sequential chain of coupled scalar fields
drives inflation. We consider a multidimensional potential with a large number
of bowls, or local minima, separated by energy barriers: inflation takes place
as the system tunnels from the highest energy bowl to another bowl of lower
energy, and so on until it reaches the zero energy ground state. Such a
scenario can be motivated by the many vacua in the stringy landscape, and our
model can apply to other multidimensional potentials. The ''graceful exit''
problem of Old Inflation is resolved since reheating is easily achieved at each
stage. Coupling between the fields is crucial to the scenario. The model is
quite generic and succeeds for natural couplings and parameters. Chain
inflation succeeds for a wide variety of energy scales -- for potentials
ranging from 10MeV scale inflation to GeV scale inflation.Comment: 31 pages, 3 figures, one reference adde
Optical study of interactions in a d-electron Kondo lattice with ferromagnetism
We report on a comprehensive optical, transport and thermodynamic study of
the Zintl compound YbMnSb, demonstrating that it is the first
ferromagnetic Kondo lattice compound in the underscreened limit. We propose a
scenerio whereby the combination of Kondo and Jahn-Teller effects provides a
consistent explanation of both transport and optical data.Comment: 4 page
Towards a High Energy Theory for the Higgs Phase of Gravity
Spontaneous Lorentz violation due to a time-dependent expectation value for a
massless scalar has been suggested as a method for dynamically generating dark
energy. A natural candidate for the scalar is a Goldstone boson arising from
the spontaneous breaking of a U(1) symmetry. We investigate the low-energy
effective action for such a Goldstone boson in a general class of models
involving only scalars, proving that if the scalars have standard kinetic terms
then at the {\em classical} level the effective action does not have the
required features for spontaneous Lorentz violation to occur asymptotically in an expanding FRW universe. Then we study the large limit of
a renormalizable field theory with a complex scalar coupled to massive
fermions. In this model an effective action for the Goldstone boson with the
properties required for spontaneous Lorentz violation can be generated.
Although the model has shortcomings, we feel it represents progress towards
finding a high energy completion for the Higgs phase of gravity.Comment: 20 pages, 5 figures;fixed typos and added reference
- …