1,381 research outputs found

    Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    Full text link
    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation).Comment: 6 pages, 4 figure

    A System for the Synchronized Recording of Sonomyography, Electromyography and Joint Angle

    Get PDF
    Ultrasound and electromyography (EMG) are two of the most commonly used diagnostic tools for the assessment of muscles. Recently, many studies reported the simultaneous collection of EMG signals and ultrasound images, which were normally amplified and digitized by different devices. However, there is lack of a systematic method to synchronize them and no study has reported the effects of ultrasound gel to the EMG signal collection during the simultaneous data collection. In this paper, we introduced a new method to synchronize ultrasound B-scan images, EMG signals, joint angles and other related signals (e.g. force and velocity signals) in real-time. The B-mode ultrasound images were simultaneously captured by the PC together with the surface EMG (SEMG) and the joint angle signal. The deformations of the forearm muscles induced by wrist motions were extracted from a sequence of ultrasound images, named as Sonomyography (SMG). Preliminary experiments demonstrated that the proposed method could reliably collect the synchronized ultrasound images, SEMG signals and joint angle signals in real-time. In addition, the effect of ultrasound gel on the SEMG signals when the EMG electrodes were close to the ultrasound probe was studied. It was found that the SEMG signals were not significantly affected by the amount of the ultrasound gel. The system is being used for the study of contractions of various muscles as well as the muscle fatigue

    Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal VO2 beams

    Full text link
    Spatial phase inhomogeneity at the nano- to microscale is widely observed in strongly-correlated electron materials. The underlying mechanism and possibility of artificially controlling the phase inhomogeneity are still open questions of critical importance for both the phase transition physics and device applications. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO2. By continuously tuning strain over a wide range in single-crystal VO2 micro- and nanobeams, here we demonstrate the nucleation and manipulation of one-dimensionally ordered metal-insulator domain arrays along the beams. Mott transition is achieved in these beams at room temperature by active control of strain. The ability to engineer phase inhomogeneity with strain lends insight into correlated electron materials in general, and opens opportunities for designing and controlling the phase inhomogeneity of correlated electron materials for micro- and nanoscale device applications.Comment: 14 pages, 4 figures, with supplementary informatio

    Change in Allosteric Network Affects Binding Affinities of PDZ Domains: Analysis through Perturbation Response Scanning

    Get PDF
    The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation

    Comparison of the Simple Patient-Centric Atopic Dermatitis Scoring System PEST with SCORAD in Young Children Using a Ceramide Dominant Therapeutic Moisturizer.

    Get PDF
    INTRODUCTION: Patient eczema severity time (PEST) is a new atopic dermatitis (AD) scoring system based on patients' own perception of their disease. Conventional scales such as SCORing of atopic dermatitis (SCORAD) reflect the clinician's observations during the clinic visit. Instead, the PEST score captures eczema severity, relapse and recovery as experienced by the patient or caregiver on a daily basis, promoting patient engagement, compliance with treatment and improved outcomes. This study aims to determine the correlation between carer-assessed PEST and clinician-assessed SCORAD in paediatric AD patients after 12Β weeks of treatment using a ceramide-dominant therapeutic moisturizer. METHODS: Prospective, open-label, observational, multi-centre study in which children with AD aged 6Β months to 6Β years were treated with a ceramide dominant therapeutic moisturizer twice daily for 12Β weeks; 58 children with mild-to-moderate AD were included. Correlation between the 7-day averaged PEST and SCORAD scores for assessment of AD severity was measured within a general linear model. PEST and SCORAD were compared in week 4 and week 12. RESULTS: At week 12, a moderate correlation was found between the SCORAD and PEST scores (rΒ =Β 0.51). The mean change in SCORAD and PEST scores from baseline to week 12 was -11.46 [95% confidence interval (CI) -14.99 to -7.92, pΒ <Β 0.0001] and -1.33 (95% CI -0.71 to -0.10, pΒ <Β 0.0001) respectively. PEST demonstrated greater responsiveness to change (33.3% of scale) compared to SCORAD (13.8% of scale). CONCLUSION: The PEST score correlates well with the SCORAD score and may have improved sensitivity when detecting changes in the severity of AD. The ceramide-dominant therapeutic moisturizer used was safe and effective in the management of AD in young children

    PIP5KIΞ² Selectively Modulates Apical Endocytosis in Polarized Renal Epithelial Cells

    Get PDF
    Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P2 is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (Ξ±, Ξ² or Ξ³). PIP5KIΞ² localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIΞ² whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P2-containing liposomes of the PtdIns(4,5)P2 binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P2 on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIΞ² have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P2 mediated by PIP5KIΞ² is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P2 may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis. Β© 2013 Szalinski et al

    Overexpression of ribosomal RNA in prostate cancer is common but not linked to rDNA promoter hypomethylation

    Get PDF
    Alterations in nucleoli, including increased numbers, increased size, altered architecture and increased function are hallmarks of prostate cancer cells. The mechanisms that result in increased nucleolar size, number and function in prostate cancer have not been fully elucidated. The nucleolus is formed around repeats of a transcriptional unit encoding a 45S ribosomal RNA (rRNA) precursor that is then processed to yield the mature 18S, 5.8S and 28S RNA species. Although it has been generally accepted that tumor cells overexpress rRNA species, this has not been examined in clinical prostate cancer. We find that indeed levels of the 45S rRNA, 28S, 18S and 5.8S are overexpressed in the majority of human primary prostate cancer specimens as compared with matched benign tissues. One mechanism that can alter nucleolar function and structure in cancer cells is hypomethylation of CpG dinucleotides of the upstream rDNA promoter region. However, this mechanism has not been examined in prostate cancer. To determine whether rRNA overexpression could be explained by hypomethylation of these CpG sites, we also evaluated the DNA methylation status of the rDNA promoter in prostate cancer cell lines and the clinical specimens. Bisulfite sequencing of genomic DNA revealed two roughly equal populations of loci in cell lines consisting of those that contained densely methylated deoxycytidine residues within CpGs and those that were largely unmethylated. All clinical specimens also contained two populations with no marked changes in methylation of this region in cancer as compared with normal. We recently reported that MYC can regulate rRNA levels in human prostate cancer; here we show that MYC mRNA levels are correlated with 45S, 18S and 5.8S rRNA levels. Further, as a surrogate for nucleolar size and number, we examined the expression of fibrillarin, which did not correlate with rRNA levels. We conclude that rRNA levels are increased in human prostate cancer, but that hypomethylation of the rDNA promoter does not explain this increase, nor does hypomethylation explain alterations in nucleolar number and structure in prostate cancer cells. Rather, rRNA levels and nucleolar size and number relate more closely to MYC overexpression

    Effects of Protein Deficiency on Perinatal and Postnatal Health Outcomes

    Get PDF
    There are a variety of environmental insults that can occur during pregnancy which cause low birth weight and poor fetal health outcomes. One such insult is maternal malnutrition, which can be further narrowed down to a low protein diet during gestation. Studies show that perinatal protein deficiencies can impair proper organ growth and development, leading to long-term metabolic dysfunction. Understanding the molecular mechanisms that underlie how this deficiency leads to adverse developmental outcomes is essential for establishing better therapeuticstrategies that may alleviate or prevent diseases in later life. This chapter reviews how perinatal protein restriction in humans and animals leads to metabolic disease, and it identifies the mechanisms that have been elucidated, to date. These include alterations in transcriptional and epigenetic mechanisms, as well as indirect means such as endoplasmic reticulum (ER) stress and oxidative stress. Furthermore, nutritional and pharmaceutical interventions are highlighted to illustrate that the plasticity of the underdeveloped organs during perinatal life can be exploited to prevent onset of long-term metabolic disease

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future
    • …
    corecore