39 research outputs found

    Variational quantum algorithm with information sharing

    Get PDF
    We introduce an optimisation method for variational quantum algorithms and experimentally demonstrate a 100-fold improvement in efficiency compared to naive implementations. The effectiveness of our approach is shown by obtaining multi-dimensional energy surfaces for small molecules and a spin model. Our method solves related variational problems in parallel by exploiting the global nature of Bayesian optimisation and sharing information between different optimisers. Parallelisation makes our method ideally suited to the next generation of variational problems with many physical degrees of freedom. This addresses a key challenge in scaling-up quantum algorithms towards demonstrating quantum advantage for problems of real-world interest

    Characterization of variational quantum algorithms using free fermions

    Get PDF
    We study variational quantum algorithms from the perspective of free fermions. By deriving the explicit structure of the associated Lie algebras, we show that the Quantum Approximate Optimization Algorithm (QAOA) on a one-dimensional lattice -- with and without decoupled angles -- is able to prepare all fermionic Gaussian states respecting the symmetries of the circuit. Leveraging these results, we numerically study the interplay between these symmetries and the locality of the target state, and find that an absence of symmetries makes nonlocal states easier to prepare. An efficient classical simulation of Gaussian states, with system sizes up to 8080 and deep circuits, is employed to study the behavior of the circuit when it is overparameterized. In this regime of optimization, we find that the number of iterations to converge to the solution scales linearly with system size. Moreover, we observe that the number of iterations to converge to the solution decreases exponentially with the depth of the circuit, until it saturates at a depth which is quadratic in system size. Finally, we conclude that the improvement in the optimization can be explained in terms of of better local linear approximations provided by the gradients

    Topological bulk states and their currents

    Get PDF
    We provide evidence that, alongside topologically protected edge states, two-dimensional Chern insulators also support localized bulk states deep in their valence and conduction bands. These states manifest when local potential gradients are applied to the bulk, while all parts of the system remain adiabatically connected to the same phase. In turn, the bulk states produce bulk current transverse to the potential difference. This occurs even when the potential is always below the energy gap, where one expects only edge currents to appear. Bulk currents are topologically protected and behave as edge currents under an external influence, such as temperature or local disorder. Detecting topologically resilient bulk currents offers a direct means to probe the localized bulk states

    Seeing topological edge and bulk currents in time-of-flight images

    Get PDF
    Here we provide a general methodology to directly measure the topological currents emerging in the optical lattice implementation of the Haldane model. Alongside the edge currents supported by gapless edge states, transverse currents can emerge in the bulk of the system whenever the local potential is varied in space, even if it does not cause a phase transition. In optical lattice implementations the overall harmonic potential that traps the atoms provides the boundaries of the topological phase that supports the edge currents, as well as providing the potential gradient across the topological phase that gives rise to the bulk current. Both the edge and bulk currents are resilient to several experimental parameters such as trapping potential, temperature, and disorder. We propose to investigate the properties of these currents directly from time-of-flight images with both short-time and long-time expansions

    Quantum delocalized interactions

    Get PDF
    Classical mechanics obeys the intuitive logic that a physical event happens at a definite spatial point. Entanglement, however, breaks this logic by enabling interactions without a specific location. In this work we study these delocalized interactions. These are quantum interactions that create less locational information than would be possible classically, as captured by the disturbance induced on some spatial superposition state. We introduce quantum games to capture the effect and demonstrate a direct operational use for quantum concurrence in that it bounds the nonclassical performance gain. We also find a connection with quantum teleportation, and demonstrate the games using an IBM quantum processor

    Understanding acute ankle ligamentous sprain injury in sports

    Get PDF
    This paper summarizes the current understanding on acute ankle sprain injury, which is the most common acute sport trauma, accounting for about 14% of all sport-related injuries. Among, 80% are ligamentous sprains caused by explosive inversion or supination. The injury motion often happens at the subtalar joint and tears the anterior talofibular ligament (ATFL) which possesses the lowest ultimate load among the lateral ligaments at the ankle. For extrinsic risk factors to ankle sprain injury, prescribing orthosis decreases the risk while increased exercise intensity in soccer raises the risk. For intrinsic factors, a foot size with increased width, an increased ankle eversion to inversion strength, plantarflexion strength and ratio between dorsiflexion and plantarflexion strength, and limb dominance could increase the ankle sprain injury risk. Players with a previous sprain history, players wearing shoes with air cells, players who do not stretch before exercising, players with inferior single leg balance, and overweight players are 4.9, 4.3, 2.6, 2.4 and 3.9 times more likely to sustain an ankle sprain injury. The aetiology of most ankle sprain injuries is incorrect foot positioning at landing – a medially-deviated vertical ground reaction force causes an explosive supination or inversion moment at the subtalar joint in a short time (about 50 ms). Another aetiology is the delayed reaction time of the peroneal muscles at the lateral aspect of the ankle (60–90 ms). The failure supination or inversion torque is about 41–45 Nm to cause ligamentous rupture in simulated spraining tests on cadaver. A previous case report revealed that the ankle joint reached 48 degrees inversion and 10 degrees internal rotation during an accidental grade I ankle ligamentous sprain injury during a dynamic cutting trial in laboratory. Diagnosis techniques and grading systems vary, but the management of ankle ligamentous sprain injury is mainly conservative. Immobilization should not be used as it results in joint stiffness, muscle atrophy and loss of proprioception. Traditional Chinese medicine such as herbs, massage and acupuncture were well applied in China in managing sports injuries, and was reported to be effective in relieving pain, reducing swelling and edema, and restoring normal ankle function. Finally, the best practice of sports medicine would be to prevent the injury. Different previous approaches, including designing prophylactice devices, introducing functional interventions, as well as change of games rules were highlighted. This paper allows the readers to catch up with the previous researches on ankle sprain injury, and facilitate the future research idea on sport-related ankle sprain injury

    Specific heat of 2D interacting Majorana fermions from holography

    Get PDF
    Majorana fermions are a fascinating medium for discovering new phases of matter. However, the standard analytical tools are very limited in probing the non-perturbative aspects of interacting Majoranas in more than one dimensions. Here, we employ the holographic correspondence to determine the specific heat of a two-dimensional interacting gapless Majorana system. To perform our analysis we first describe the interactions in terms of a pseudo-scalar torsion field. We then allow fluctuations in the background curvature thus identifying our model with a (2 + 1)-dimensional Anti-de Sitter (AdS) geometry with torsion. By employing the AdS/CFT correspondence, we show that the interacting model is dual to a (1 + 1)-dimensional conformal field theory (CFT) with central charge that depends on the interaction coupling. This non-perturbative result enables us to determine the effect interactions have in the specific heat of the system at the zero temperature limit

    The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p

    Thermally induced metallic phase in a gapped quantum spin liquid: Monte Carlo study of the Kitaev model with parity projection

    Get PDF
    Thermalization is a probabilistic process. As such, it is generally expected that when we increase the temperature of a system, its classical behavior dominates its quantum coherences. By employing the Gibbs state of a translationally invariant quantum spin liquid—Kitaev's honeycomb lattice model—we demonstrate that an insulating phase at T=0 becomes metallic purely by increasing temperature. In particular, we compute the finite-temperature distribution of energies and show that it diverges logarithmically, as we move to small energies. The corresponding wave functions become critical like at Anderson transitions. These characteristics are obtained within an exact Monte Carlo method that simulates the finite-temperature behavior of the Kitaev model. In particular, we take into account the projection onto the physical parity sectors, required for identifying the topological degeneracy of the model. Our work opens the possibility to detect thermal metal behavior in spin liquid experiments

    Qubit readout error mitigation with bit-flip averaging

    No full text
    Quantum computers are becoming increasingly accessible, and may soon outperform classical computers for useful tasks. However, qubit readout errors remain a significant hurdle to running quantum algorithms on current devices. We present a scheme to more efficiently mitigate these errors on quantum hardware and numerically show that our method consistently gives advantage over previous mitigation schemes. Our scheme removes biases in the readout errors allowing a general error model to be built with far fewer calibration measurements. Specifically, for reading out nn-qubits we show a factor of 2n2^n reduction in the number of calibration measurements without sacrificing the ability to compensate for correlated errors. Our approach can be combined with, and simplify, other mitigation methods allowing tractable mitigation even for large numbers of qubits
    corecore