43 research outputs found

    Cannabis in medicine: a national educational needs assessment among Canadian physicians

    Get PDF
    BACKGROUND: There is increasing global awareness and interest in the use of cannabis for therapeutic purposes (CTP). It is clear that health care professionals need to be involved in these decisions, but often lack the education needed to engage in informed discussions with patients. This study was conducted to determine the educational needs of Canadian physicians regarding CTP. METHODS: A national needs assessment survey was developed based on previous survey tools. The survey was approved by the Research Ethics Board of the McGill University Health Centre Research Institute and was provided online using LimeSurvey¼. Several national physician organizations and medical education organizations informed their members of the survey. The target audience was Canadian physicians. We sought to identify and rank using 5-point Likert scales the most common factors involved in decision making about using CTP in the following categories: knowledge, experience, attitudes, and barriers. Preferred educational approaches and physician demographics were collected. Gap analysis was conducted to determine the magnitude and importance of differences between perceived and desired knowledge on all decision factors. RESULTS: Four hundred and twenty six responses were received, and physician responses were distributed across Canada consistent with national physician distribution. The most desired knowledge concerned “potential risks of using CTP” and “safety, warning signs and precautions for patients using CTP”. The largest gap between perceived current and desired knowledge levels was “dosing” and “the development of treatment plans”. CONCLUSIONS: We have identified several key educational needs among Canadian physicians regarding CTP. These data can be used to develop resources and educational programs to support clinicians in this area, as well as to guide further research to inform these gaps

    Bacteriological and physico-chemical assessment of wastewater in different region of Tunisia: impact on human health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many parts of the world, health problems and diseases have often been caused by discharging untreated or inadequately treated wastewater. In this study, we aimed to control physico-chemical parameters in wastewater samples. Also, microbiological analyses were done to reveal <it>Salmonella </it>strains and each <it>Escherichia coli </it>(<it>E.coli</it>) pathotype.</p> <p>Findings</p> <p>Sixty wastewater samples were collected from fifteen different regions of Tunisia. All physico-chemical parameters (pH, residual free chlorine, total suspended solids, biological oxygen demand, and chemical oxygen demand) were evaluated.</p> <p>For microbiological analyses, samples were filtered to concentrate bacteria. DNA was extracted by boiling and subjected to polymerase chain reaction (PCR) using different pairs of primers.</p> <p>The mean pH values recorded for the sampling point were above the WHO pH tolerance limit. The total suspended solids (TSS) concentrations varied between 240 mg/L and 733 mg/L in entrance points and between 13 mg/L and 76 mg/L in exit points. In entrance points, the studied wastewater has an average COD concentration that varied between 795 mg/mL to 1420 mg/mL. Whereas, BOD concentration of the wastewater ranged between 270 mg/L to 610 mg/L. In exit points, COD concentration varied between 59 mg/L and 141 mg/L, whereas BOD concentration ranged from 15 mg/L to 87 mg/L.</p> <p>The bacteriological control of wastewaters showed that, in entrance points, <it>Escherichia coli </it>(<it>E.coli</it>) was detected at the rate of 76.6%. Three <it>E.coli </it>pathotypes were found: ETEC (53.3%), EAEC (16.6%) and EIEC (6.6%).</p> <p>Concerning the ETEC isolated strains, 8 of 16 (50%) have only the heat-labile toxin gene, 5 of 16 (31.2%) present only the heat-stable toxin gene and 3 of 16 (18.7%) of strains possess both heat-labile toxin gene and heat-stable toxin gene. In exist point, the same pathotypes were found but all detected ETEC strains present only the "est" gene.</p> <p>Concerning <it>Salmonella </it>isolated strains; percentages of 66.6% and 20% were found in entrance and exit points respectively.</p> <p>Conclusions</p> <p>Wastewaters contain a large amount of pathogenic bacteria that present a real impact on human health. Assessment wastewater treatment stations have to consider in account enterobacterial pathogens as potential pathogens that should be correctly controlled.</p

    Person-Specific Non-shared Environmental Influences in Intra-individual Variability : A Preliminary Case of Daily School Feelings in Monozygotic Twins

    Get PDF
    Most behavioural genetic studies focus on genetic and environmental influences on inter-individual phenotypic differences at the population level. The growing collection of intensive longitudinal data in social and behavioural science offers a unique opportunity to examine genetic and environmental influences on intra-individual phenotypic variability at the individual level. The current study introduces a novel idiographic approach and one novel method to investigate genetic and environmental influences on intra-individual variability by a simple empirical demonstration. Person-specific non-shared environmental influences on intra-individual variability of daily school feelings were estimated using time series data from twenty-one pairs of monozygotic twins (age = 10 years, 16 female pairs) over two consecutive weeks. Results showed substantial inter-individual heterogeneity in person-specific non-shared environmental influences. The current study represents a first step in investigating environmental influences on intra-individual variability with an idiographic approach, and provides implications for future behavioural genetic studies to examine developmental processes from a microscopic angle

    Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation

    Get PDF
    Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C=O over C=C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C=O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes
    corecore