570 research outputs found

    Hybridization in human evolution: Insights from other organisms

    Full text link
    During the late Pleistocene, isolated lineages of hominins exchanged genes thus influencing genomic variation in humans in both the past and present. However, the dynamics of this genetic exchange and associated phenotypic consequences through time remain poorly understood. Gene exchange across divergent lineages can result in myriad outcomes arising from these dynamics and the environmental conditions under which it occurs. Here we draw from our collective research across various organisms, illustrating some of the ways in which gene exchange can structure genomic/phenotypic diversity within/among species. We present a range of examples relevant to questions about the evolution of hominins. These examples are not meant to be exhaustive, but rather illustrative of the diverse evolutionary causes/consequences of hybridization, highlighting potential drivers of human evolution in the context of hybridization including: influences on adaptive evolution, climate change, developmental systems, sex-differences in behavior, Haldane’s rule and the large X-effect, and transgressive phenotypic variation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151330/1/evan21787.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151330/2/evan21787_am.pd

    Breast cancer risk factors and a novel measure of volumetric breast density: cross-sectional study

    Get PDF
    We conducted a cross-sectional study nested within a prospective cohort of breast cancer risk factors and two novel measures of breast density volume among 590 women who had attended Glasgow University (1948–1968), replied to a postal questionnaire (2001) and attended breast screening in Scotland (1989–2002). Volumetric breast density was estimated using a fully automated computer programme applied to digitised film-screen mammograms, from medio-lateral oblique mammograms at the first-screening visit. This measured the proportion of the breast volume composed of dense (non-fatty) tissue (Standard Mammogram Form (SMF)%) and the absolute volume of this tissue (SMF volume, cm3). Median age at first screening was 54.1 years (range: 40.0–71.5), median SMF volume 70.25 cm3 (interquartile range: 51.0–103.0) and mean SMF% 26.3%, s.d.=8.0% (range: 12.7–58.8%). Age-adjusted logistic regression models showed a positive relationship between age at last menstrual period and SMF%, odds ratio (OR) per year later: 1.05 (95% confidence interval: 1.01–1.08, P=0.004). Number of pregnancies was inversely related to SMF volume, OR per extra pregnancy: 0.78 (0.70–0.86, P<0.001). There was a suggestion of a quadratic relationship between birthweight and SMF%, with lowest risks in women born under 2.5 and over 4 kg. Body mass index (BMI) at university (median age 19) and in 2001 (median age 62) were positively related to SMF volume, OR per extra kg m−2 1.21 (1.15–1.28) and 1.17 (1.09–1.26), respectively, and inversely related to SMF%, OR per extra kg m−2 0.83 (0.79–0.88) and 0.82 (0.76–0.88), respectively, P<0.001. Standard Mammogram Form% and absolute SMF volume are related to several, but not all, breast cancer risk factors. In particular, the positive relationship between BMI and SMF volume suggests that volume of dense breast tissue will be a useful marker in breast cancer studies

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Breast cancer susceptibility loci and mammographic density

    Get PDF
    Introduction Recently, the Breast Cancer Association Consortium (BCAC) conducted a multi-stage genome-wide association study and identified 11 single nucleotide polymorphisms (SNPs) associated with breast cancer risk. Given the high degree of heritability of mammographic density and its strong association with breast cancer, it was hypothesised that breast cancer susceptibility loci may also be associated with breast density and provide insight into the biology of breast density and how it influences breast cancer risk. Methods We conducted an analysis in the Nurses\u27 Health Study (n = 1121) to assess the relation between 11 breast cancer susceptibility loci and mammographic density. At the time of their mammogram, 217 women were premenopausal and 904 women were postmenopausal. We used generalised linear models adjusted for covariates to determine the mean percentage of breast density according to genotype. Results Overall, no association between the 11 breast cancer susceptibility loci and mammographic density was seen. Among the premenopausal women, three SNPs (rs12443621 [TNRc9/LOC643714], rs3817198 [lymphocyte-specific protein-1] and rs4666451) were marginally associated with mammographic density (p \u3c 0.10). All three of these SNPs showed an association that was consistent with the direction in which these alleles influence breast cancer risk. The difference in mean percentage mammographic density comparing homozygous wildtypes to homozygous variants ranged from 6.3 to 8.0%. None of the 11 breast cancer loci were associated with postmenopausal breast density. Conclusion Overall, breast cancer susceptibility loci identified through a genome-wide association study do not appear to be associated with breast cancer risk

    Use of DNA–Damaging Agents and RNA Pooling to Assess Expression Profiles Associated with BRCA1 and BRCA2 Mutation Status in Familial Breast Cancer Patients

    Get PDF
    A large number of rare sequence variants of unknown clinical significance have been identified in the breast cancer susceptibility genes, BRCA1 and BRCA2. Laboratory-based methods that can distinguish between carriers of pathogenic mutations and non-carriers are likely to have utility for the classification of these sequence variants. To identify predictors of pathogenic mutation status in familial breast cancer patients, we explored the use of gene expression arrays to assess the effect of two DNA–damaging agents (irradiation and mitomycin C) on cellular response in relation to BRCA1 and BRCA2 mutation status. A range of regimes was used to treat 27 lymphoblastoid cell-lines (LCLs) derived from affected women in high-risk breast cancer families (nine BRCA1, nine BRCA2, and nine non-BRCA1/2 or BRCAX individuals) and nine LCLs from healthy individuals. Using an RNA–pooling strategy, we found that treating LCLs with 1.2 µM mitomycin C and measuring the gene expression profiles 1 hour post-treatment had the greatest potential to discriminate BRCA1, BRCA2, and BRCAX mutation status. A classifier was built using the expression profile of nine QRT–PCR validated genes that were associated with BRCA1, BRCA2, and BRCAX status in RNA pools. These nine genes could distinguish BRCA1 from BRCA2 carriers with 83% accuracy in individual samples, but three-way analysis for BRCA1, BRCA2, and BRCAX had a maximum of 59% prediction accuracy. Our results suggest that, compared to BRCA1 and BRCA2 mutation carriers, non-BRCA1/2 (BRCAX) individuals are genetically heterogeneous. This study also demonstrates the effectiveness of RNA pools to compare the expression profiles of cell-lines from BRCA1, BRCA2, and BRCAX cases after treatment with irradiation and mitomycin C as a method to prioritize treatment regimes for detailed downstream expression analysis

    Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    Get PDF
    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

    Trees and shrubs as sources of fodder in Australia

    Get PDF
    Experience with browse plants in Australia is briefly reviewed in terms of their forage value to animals, their economic value to the landholder and their ecological contribution to landscape stability. Of the cultivated species only two have achieved any degree of commercial acceptance (Leucaena leucocephala and Chamaecytisus palmensis). Both of these are of sufficiently high forage value to be used as the sole source of feed during seasonal periods of nutritional shortage. Both are also leguminous shrubs that establish readily from seed. It is suggested that a limitation in their present use is the reliance on stands of single species which leaves these grazing systems vulnerable to disease and insects. Grazing systems so far developed for high production and persistence of cultivated species involve short periods of intense grazing followed by long periods of recovery. Similar management may be necessary in the arid and semi-arid rangelands where palatable browse species are in decline

    The Status of Dosage Compensation in the Multiple X Chromosomes of the Platypus

    Get PDF
    Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and “placentals”) by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation operates in the third mammal lineage, the egg-laying monotremes, is of considerable interest, since the platypus has a complex sex chromosome system in which five X and five Y chromosomes share considerable genetic homology with the chicken ZW sex chromosome pair, but not with therian XY chromosomes. The assignment of genes to four platypus X chromosomes allowed us to examine X dosage compensation in this unique species. Quantitative PCR showed a range of compensation, but SNP analysis of several X-borne genes showed that both alleles are transcribed in a heterozygous female. Transcription of 14 BACs representing 19 X-borne genes was examined by RNA-FISH in female and male fibroblasts. An autosomal control gene was expressed from both alleles in nearly all nuclei, and four pseudoautosomal BACs were usually expressed from both alleles in male as well as female nuclei, showing that their Y loci are active. However, nine X-specific BACs were usually transcribed from only one allele. This suggests that while some genes on the platypus X are not dosage compensated, other genes do show some form of compensation via stochastic transcriptional inhibition, perhaps representing an ancestral system that evolved to be more tightly controlled in placental mammals such as human and mouse
    corecore