1,133 research outputs found

    Antibody localization in horse, rabbit, and goat antilymphocyte sera

    Get PDF
    The localization of antibodies was studied in rabbit, goat, and horse ALS raised by weekly immunization with canine or human spleen cells for 4 to 12 weeks. A combination of analytic techniques was used including column chromatography, electrophoresis, immunoelectrophoresis, determination of protein concentration, and measurement of antibody titers. In the rabbit and goat ALS, virtually all of the leukoagglutinins and lymphocytotoxins were in the easily separable IgG; accidentally induced thromboagglutinins were in the same location. In the rabbit hemagglutinins were found in both the IgG and IgM, whereas in the goat these were almost exclusively in the IgM. The antiwhite cell antibodies were most widely distributed in the horse. The cytotoxins were primarily in the IgG, but the leukoagglutinins were most heavily concentrated in the T-equine globulin which consists mostly of IgA. By differential ammonium sulfate precipitation of a horse antidoglymphocyte serum, fractions were prepared that were rich in IgG and IgA. Both were able to delay the rejection of canine renal homografts, the IgA-rich preparation to a somewhat greater degree. The findings in this study have been discussed in relation to the refining techniques that have been used for the production of globulin from heterologous ALS. © 1970

    D-Brane Wess-Zumino Terms and U-Duality

    Get PDF
    We construct gauge-invariant and U-duality covariant expressions for Wess-Zumino terms corresponding to general Dp-branes (for any p<D) in arbitrary 2<D<11 dimensions. A distinguishing feature of these Wess-Zumino terms is that they contain twice as many scalars as the 10-D compactified dimensions, in line with doubled geometry. We find that for D<10 the charges of the higher-dimensional branes can all be expressed as products of the 0-brane charges, which include the D0-brane and the NS-NS 0-brane charges. We give the general expressions for these charges and show how they determine the non-trivial conjugacy class to which some of the higher-dimensional D-branes belong.Comment: 42 pages. Typos corrected, an error in table 6 corrected, comments in the conclusions adde

    Fake supersymmetry versus Hamilton-Jacobi

    Get PDF
    We explain when the first-order Hamilton-Jacobi equations for black holes (and domain walls) in (gauged) supergravity, reduce to the usual first-order equations derived from a fake superpotential. This turns out to be equivalent to the vanishing of a newly found constant of motion and we illustrate this with various examples. We show that fake supersymmetry is a necessary condition for having physically sensible extremal black hole solutions. We furthermore observe that small black holes become scaling solutions near the horizon. When combined with fake supersymmetry, this leads to a precise extension of the attractor mechanism to small black holes: The attractor solution is such that the scalars move on specific curves, determined by the black hole charges, that are purely geodesic, although there is a non-zero potential.Comment: 20 pages, v2: Typos corrected, references adde

    The absence of interleukin 9 does not affect the development of allergen-induced pulmonary inflammation nor airway hyperreactivity

    Get PDF
    Interleukin (IL)-9 is a pleiotropic cytokine secreted by T helper (Th)2 cells and has been proposed as a candidate gene for asthma and allergy. We have used mice genetically deficient in IL-9 to determine the role of this cytokine in the pathophysiologic features of the allergic pulmonary response–airway hyperreactivity (AHR) and eosinophilia. We have demonstrated that IL-9 is not required for the development of a robust Th2 response to allergen in sensitized mice. IL-9 knockout mice developed a similar degree of eosinophilic inflammation and AHR to their wild-type littermates. Goblet cell hyperplasia and immunoglobulin (Ig) E production were also unaffected by the lack of IL-9. Moreover, levels of bronchoalveolar lavage (BAL) IL-4, IL-5, and IL-13 were comparable between wild-type and knockout mice. These findings indicate that IL-9 is not obligatory for the development of eosinophilia and AHR, and imply that other Th2 cytokines can act in a compensatory fashion

    The role of bacterial and algal exopolymeric substances in iron chemistry

    Full text link
    © 2015 Elsevier B.V. It is widely accepted that the complexation of iron (Fe) with organic compounds is the primary factor that regulates Fe reactivity and its bioavailability to phytoplankton in the open ocean. Despite considerable efforts to unravel the provenance of the many organic ligands present in the 'ligand soup' and their contribution to Fe chemistry, much of this pool remains largely unresolved. Bacteria and phytoplankton are known to release exopolymeric substances (EPS) for a variety of functions and it is known that this material has metal binding properties. However, the contribution that bacterial and algal EPS makes to Fe biogeochemistry is not well documented. This study revealed that both bacterial and algal EPS contain functional components known to bind Fe (uronic acid, saccharides) and details the molecular weight distribution of the EPS. It is also demonstrated that components of the EPS have a high affinity for Fe-binding, in some cases similar to that of bacterial siderophores (~KFe'L 1012) and that this material greatly enhances Fe solubility (and, possibly, Fe oxyhydroxide reactivity via prevention of aggregation) in seawater. However, EPS may also accelerate Fe(II) oxidation and thus Fe(II) removal from the system. Our findings indicate that, in remote ocean regions, bacterial and algal EPS could play a significant role in the biogeochemical cycling of Fe and their contribution should be considered to further our understanding of the dynamics of Fe-limited oceans

    D=7 / D=6 Heterotic Supergravity with Gauged R-Symmetry

    Get PDF
    We construct a family of chiral anomaly-free supergravity theories in D=6 starting from D=7 supergravity with a gauged noncompact R-symmetry, employing a Horava-Witten bulk-plus-boundary construction. The gauged noncompact R-symmetry yields a positive (de Sitter sign) D=6 scalar field potential. Classical anomaly inflow which is needed to cancel boundary-field loop anomalies requires careful consideration of the gravitational, gauge, mixed and local supersymmetry anomalies. Coupling of boundary hypermultiplets requires care with the Sp(1) gauge connection required to obtain quaternionic Kahler target manifolds in D=6. This class of gauged R-symmetry models may be of use as starting points for further compactifications to D=4 that take advantage of the positive scalar potential, such as those proposed in the scenario of supersymmetry in large extra dimensions.Comment: 43 pages, plain Latex; Clarification of discussion and references adde

    Evaluating Retinal Function in Age-Related Maculopathy with the ERG Photostress Test

    Get PDF
    PURPOSE. To evaluate the diagnostic potential of the electroretinogram (ERG) photostress test and the focal cone ERG in age-related maculopathy (ARM). METHODS. The cohort comprised 31 patients with ARM and 27 age-matched control subjects. The ERG photostress test was used to monitor cone adaptation after intense light adaptation. Focal 41- and 5-Hz cone ERGs were recorded monocularly (central 20°) to assess steady state retinal function. Univariate analysis identified electrophysiological parameters that differed between groups, and receiver operating characteristic (ROC) curves were constructed to assess their diagnostic potential. Logistic regression analysis determined the diagnostic potential of a model incorporating several independent predictors of ARM. RESULTS. The rate of recovery of the ERG photostress test was reduced (recovery was slower) in subjects with ARM. The parameter exhibited good diagnostic potential (P = 0.002, area under ROC curve = 0.74). The implicit times of the 5-Hz (a-wave, P = 0.002; b-wave, P < 0.001) and the 41-Hz (P < 0.001) focal cone ERGs were increased, and the 41-Hz focal cone ERG amplitude (P = 0.003) and focal to full-field amplitude ratio (P = 0.001) were reduced in the ARM group. Logistic regression analysis identified three independent predictors of ARM, including the rate of recovery of the ERG photostress test. CONCLUSIONS. Early ARM has a marked effect on the kinetics of cone adaptation. The clinical application of the ERG photostress test increases the sensitivity and specificity of a model for the diagnosis of ARM. Improved assessment of the functional integrity of the central retina will facilitate early diagnosis and evaluation of therapeutic interventions

    The molecular characterisation of Escherichia coli K1 isolated from neonatal nasogastric feeding tubes

    Get PDF
    Background: The most common cause of Gram-negative bacterial neonatal meningitis is E. coli K1. It has a mortality rate of 10–15%, and neurological sequelae in 30– 50% of cases. Infections can be attributable to nosocomial sources, however the pre-colonisation of enteral feeding tubes has not been considered as a specific risk factor. Methods: Thirty E. coli strains, which had been isolated in an earlier study, from the residual lumen liquid and biofilms of neonatal nasogastric feeding tubes were genotyped using pulsed-field gel electrophoresis, and 7-loci multilocus sequence typing. Potential pathogenicity and biofilm associated traits were determined using specific PCR probes, genome analysis, and in vitro tissue culture assays. Results: The E. coli strains clustered into five pulsotypes, which were genotyped as sequence types (ST) 95, 73, 127, 394 and 2076 (Achman scheme). The extra-intestinal pathogenic E. coli (ExPEC) phylogenetic group B2 ST95 serotype O1:K1:NM strains had been isolated over a 2 week period from 11 neonates who were on different feeding regimes. The E. coli K1 ST95 strains encoded for various virulence traits associated with neonatal meningitis and extracellular matrix formation. These strains attached and invaded intestinal, and both human and rat brain cell lines, and persisted for 48 h in U937 macrophages. E. coli STs 73, 394 and 2076 also persisted in macrophages and invaded Caco-2 and human brain cells, but only ST394 invaded rat brain cells. E. coli ST127 was notable as it did not invade any cell lines. Conclusions: Routes by which E. coli K1 can be disseminated within a neonatal intensive care unit are uncertain, however the colonisation of neonatal enteral feeding tubes may be one reservoir source which could constitute a serious health risk to neonates following ingestion

    A Variational Deduction of Second Gradient Poroelasticity Part I: General Theory

    Get PDF
    Second gradient theories have to be used to capture how local micro heterogeneities macroscopically affect the behavior of a continuum. In this paper a configurational space for a solid matrix filled by an unknown amount of fluid is introduced. The Euler-Lagrange equations valid for second gradient poromechanics, generalizing those due to Biot, are deduced by means of a Lagrangian variational formulation. Starting from a generalized Clausius-Duhem inequality, valid in the framework of second gradient theories, the existence of a macroscopic solid skeleton Lagrangian deformation energy, depending on the solid strain and the Lagrangian fluid mass density as well as on their Lagrangian gradients, is proven.Comment: 20 page
    corecore