45 research outputs found

    The chemical signatures underlying host plant discrimination by aphids

    Get PDF
    The diversity of phytophagous insects is largely attributable to speciation involving shifts between host plants. These shifts are mediated by the close interaction between insects and plant metabolites. However, there has been limited progress in understanding the chemical signatures that underlie host preferences. We use the pea aphid (Acyrthosiphon pisum) to address this problem. Host-associated races of pea aphid discriminate between plant species in race-specific ways. We combined metabolomic profiling of multiple plant species with behavioural tests on two A. pisum races, to identify metabolites that explain variation in either acceptance or discrimination. Candidate compounds were identified using tandem mass spectrometry. Our results reveal a small number of compounds that explain a large proportion of variation in the differential acceptability of plants to A. pisum races. Two of these were identified as L-phenylalanine and L-tyrosine but it may be that metabolically-related compounds directly influence insect behaviour. The compounds implicated in differential acceptability were not related to the set correlated with general acceptability of plants to aphids, regardless of host race. Small changes in response to common metabolites may underlie host shifts. This study opens new opportunities for understanding the mechanistic basis of host discrimination and host shifts in insects

    Attending to warning signs of primary immunodeficiencies disease across the range of clinical practices

    Get PDF
    Purpose: Patients with primary immunodeficiency diseases (PIDD) may present with recurrent infections affecting different organs, organ-specific inflammation/autoimmunity, and also increased cancer risk, particularly hematopoietic malignancies. The diversity of PIDD and the wide age range over which these clinical occurrences become apparent often make the identification of patients difficult for physicians other than immunologists. The aim of this report is to develop a tool for educative programs targeted to specialists and applied by clinical immunologists. Methods: Considering the data from national surveys and clinical reports of experiences with specific PIDD patients, an evidence-based list of symptoms, signs, and corresponding laboratory tests were elaborated to help physicians other than immunologists look for PIDD. Results: Tables including main clinical manifestations, restricted immunological evaluation, and possible related diagnosis were organized for general practitioners and 5 specialties. Tables include information on specific warning signs of PIDD for pulmonologists, gastroenterologists, dermatologists, hematologists, and infectious disease specialists. Conclusions: This report provides clinical immunologists with an instrument they can use to introduce specialists in other areas of medicine to the warning signs of PIDD and increase early diagnosis. Educational programs should be developed attending the needs of each specialty.Fil: Costa Carvalho, Beatriz Tavares. Universidade Federal de São Paulo; BrasilFil: Sevciovic Grumach, Anete. Fundação ABC. Faculdade de Medicina; BrasilFil: Franco, José Luis. Universidad de Antioquia; ColombiaFil: Espinosa Rosales, Francisco Javier. Instituto Nacional de Pediatría. Unidad de Investigación en Inmunodeficiencias; MéxicoFil: Leiva, Lily E.. State University of Louisiana; Estados UnidosFil: King, Alejandra. Hospital de Niños Doctor Luis Calvo Mackenna. Unidad de Inmunología; ChileFil: Porras, Oscar. Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”; Costa RicaFil: Bezrodnik, Liliana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Oleastro, Mathias. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Sorensen, Ricardo U.. State University of Louisiana; Estados Unidos. Universidad de La Frontera. Facultad de Medicina; MéxicoFil: Condino Neto, Antonio. Universidade de Sao Paulo; Brasi

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Alpha helices are more robust to mutations than beta strands

    Get PDF
    The rapidly increasing amount of data on human genetic variation has resulted in a growing demand to identify pathogenic mutations computationally, as their experimental validation is currently beyond reach. Here we show that alpha helices and beta strands differ significantly in their ability to tolerate mutations: helices can accumulate more mutations than strands without change, due to the higher numbers of inter-residue contacts in helices. This results in two patterns: a) the same number of mutations causes less structural change in helices than in strands; b) helices diverge more rapidly in sequence than strands within the same domains. Additionally, both helices and strands are significantly more robust than coils. Based on this observation we show that human missense mutations that change secondary structure are more likely to be pathogenic than those that do not. Moreover, inclusion of predicted secondary structure changes shows significant utility for improving upon state-of-the-art pathogenicity predictions
    corecore