2,617 research outputs found

    Validation of a spectrophotometric method for quantification of xanthone in biodegradable nanoparticles

    Get PDF
    Xanthone has been incorporated for the first time in nanoparticles of poly(D,L-lactide-co-glycolide) (PLGA). For this purpose the estimation of xanthone content in the nanoparticles is a crucial tool for guaranteeing the reliability of the results. Thus, a simple spectrophotometric method was validated according to USP25 and ICH guidelines for its specificity, linearity, accuracy and precision. The method was found to be specific for xanthone in the presence of nanoparticle excipients. The calibration curve was linear over the concentration range of 0.5 to 4.0 mug/mL (r > 0.999). Recovery of xanthone from nanoparticles ranged from 86.5 to 95.9%. Repeatability (intra-assay precision) and intermediate precision were found to be acceptable with relative standard deviations values (RSD) ranging from 0.3 to 3.0% and from 1.4 to 3.1%, respectively. The method was found to be suitable for the evaluation of xanthone content in nanoparticles of PLGA

    Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone

    Get PDF
    The aim of the present work was to develop and characterize two different nanosystems, nanospheres and nanocapsules, containing either xanthone (XAN) or 3-methoxyxanthone (3-MeOXAN), with the final goal of improving the delivery of these poorly water-soluble compounds. The xanthones-loaded nanospheres (nanomatrix systems) and nanocapsules (nanoreservoir systems), made of poly(DL-lactide-co-glycolide) (PLGA), were prepared by the solvent displacement technique. The following characteristics of nanoparticle formulations were determined: particle size and morphology, zeta potential, incorporation efficiency, thermal behaviour, in vitro release profiles and physical stability at 4 degrees C. The nanospheres had a mean diameter 77%) were higher than those corresponding to nanospheres for both xanthones. The release of 3-MeOXAN from nanocapsules was similar to that observed for the correspondent nanoemulsion, indicating that drug release is mainly governed by its partition between the oil core and the external aqueous medium. In contrast, the release of XAN from nanocapsules was significantly slower than from the nanoemulsion, a behaviour that suggests an interaction of the drug with the polymer. Nanocapsule formulations exhibited good physical stability at 4 degrees C during a 4-month period for XAN and during a 3-month period for 3-MeOXAN

    Improvement of the inhibitory effect of xanthones on NO production by encapsulation in PLGA nanocapsules

    Get PDF
    For the first time the inhibitory effect of xanthone and 3-methoxyxanthone on nitric oxide (NO) production by IFN-gamma/LPS activated J774 macrophage cell line is reported. A remarkable improvement of this effect promoted by encapsulation of these compounds in nanocapsules of Poly (DL-lactide-co-glycolide) (PLGA) is also demonstrated. A weak inhibitory effect of 3.6% on NO production by activated macrophages was observed for xanthone at the highest studied concentration (100 mu M). This effect was slightly higher for 3-methoxyxanthone at the same concentration, producing a reduction of 16.5% on NO production. In contrast, equivalent concentrations of xanthone and 3-methoxyxanthone incorporated in nanocapsules produced a significant decrease on NO production of 91.8 and 80.0%, respectively. Empty nanocapsules also exhibited a slight NO inhibitory activity, which may be due to the presence of soybean lecithin in the composition of the nanosystems. The viability of the macrophages was not affected either by free or nanoencapsulated xanthones. Fluorescence microscopy analysis confirmed that a phagocytic process was involved in the macrophage uptake of xanthone- and 3-methoxyxanthone-loaded PLGA nanocapsules. Phagocytosis might be the main mechanism responsible for the enhancement of the intracellular delivery of both compounds and consequently for the improvement of their biological effect

    Characterization of the molecular properties of KtrC, a second RCK domain that regulates a Ktr channel in Bacillus subtilis

    Get PDF
    RCK (regulating conductance of K+) domains are common regulatory domains that control the activity of eukaryotic and prokaryotic K+ channels and transporters. In bacteria these domains play roles in osmoregulation, regulation of turgor and membrane potential and in pH homeostasis. Whole-genome sequencing unveiled RCK gene redundancy, however the biological role of this redundancy is not well understood. In Bacillus subtilis, there are two closely related RCK domain proteins (KtrA and KtrC) that regulate the activity of the Ktr cation channels. KtrA has been well characterized but little is known about KtrC. We have characterized the structural and biochemical proprieties of KtrC and conclude that KtrC binds ATP and ADP, just like KtrA. However, in solution KtrC exist in a dynamic equilibrium between octamers and non-octameric species that is dependent on the bound ligand, with ATP destabilizing the octameric ring relative to ADP. Accordingly, KtrC-ADP crystal structures reveal closed octameric rings similar to those in KtrA, while KtrC-ATP adopts an open assembly with RCK domains forming a super-helix. In addition, both KtrC-ATP and -ADP octamers are stabilized by the signaling molecule cyclic-di-AMP, which binds to KtrC with high affinity. In contrast, c-di-AMP binds with 100-fold lower affinity to KtrA. Despite these differences we show with an E. coli complementation assay that KtrC and KtrA are interchangeable and able to form functional transporters with both KtrB and KtrD. The distinctive properties of KtrC, in particular ligand-dependent assembly/disassembly, suggest that this protein has a specific physiological role that is distinct from KtrA.Work was supported by Fundação Luso-Americana para o Desenvolvimento through the FLAD Life Science 2020 award entitled “Bacterial K+ transporters are potential antimicrobial targets: mechanisms of transport and regulation” and by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-029863 (PTDC/BIA-BQM/29863/2017) and of project "Institute for Research and Innovation in Health Sciences" (POCI-01-0145-FEDER-007274). RR was supported by FCT fellowship (SFRH/BPD/111525/2015), CMT-D was supported by FCT fellowship (SFRH/BD/123761/2016 ).

    Fluorometric Liposome Screen for Inhibitors of a Physiologically Important Bacterial Ion Channel

    Get PDF
    The bacterial K+ homeostasis machinery is widely conserved across bacterial species, and different from that in animals. Dysfunction in components of the machinery has an impact on intracellular turgor, membrane potential, adaptation to changes in both extracellular pH and osmolarity, and in virulence. Using a fluorescence-based liposome flux assay, we have performed a high-throughput screen to identify novel inhibitors of the KtrAB ion channel complex from Bacillus subtilis, a component of the K+ homeostasis machinery that is also present in many bacterial pathogens. The screen identified 41 compounds that inhibited K+ flux and that clustered into eight chemical groups. Many of the identified inhibitors were found to target KtrAB with an in vitro potency in the low µM range. We investigated the mechanisms of inhibition and found that most molecules affected either the membrane component of the channel, KtrB alone or the full KtrAB complex without a preference for the functional conformation of the channel, thus broadening their inhibitory action. A urea derivative molecule that inhibited the membrane component of KtrAB affected cell viability in conditions in which KtrAB activity is essential. With this proof-of-concept study, we demonstrate that targeting components of the K+ homeostasis machinery has the potential as a new antibacterial strategy and that the fluorescence-based flux assay is a robust tool for screening chemical libraries.This work was supported by FEDER funds through COMPETE 2020-POCI, Portugal 2020, and FCT – Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior: POCI-01-0145-FEDER-029863 (PTDC/BIA-BQM/29863/2017), and by “Fundação Luso-Americana para o Desenvolvimento” FLAD Life Science 2020 awarded to JM-C. We acknowledge FCT fellowship SFRH/BPD/105672/2015 and contract DL 57/2016/CP1355/CT0026 awarded to AF, fellowship SFRH/BPD/107785/2015 to AP, and fellowship SFRH/BD/123761/2016 to CT-D

    A validated HPLC method for the assay of xanthone and 3-methoxyxanthone in PLGA nanocapsules

    Get PDF
    This work relates the development and validation of a simple reversed-phase high-performance liquid chromatographic (HPLC) method for the analysis of xanthone (XAN) and 3-methoxyxanthone (3-MeOXAN) in poly(D,L-lactide-co-glycolide) (PLGA) nanocapsule formulations. This method does not require any complex sample extraction procedure. Chromatographic separation is made with a reversed-phase C18 column, using methanol-water (90:10, v/v) as a mobile phase at a flow rate of 1 mL/min. Identification is made by UV detection at 237 nm. The isocratic system operates at ambient temperature and requires 7 min of chromatographic time. The developed method is statistically validated according to United States Pharmacopoeia 25 and International Conference on Harmonization guidelines for its specificity, linearity, accuracy, and precision. The assay method proposed in this study is specific for XAN and 3-MeOXAN in the presence of nanocapsule excipients. Diode-array analyses confirm the homogeneity of XAN and 3-MeOXAN peaks in stressed conditions. Standard curves are linear (r > 0.999) over the concentration range of 0.4-2.5 and 1.0-5.8 g/mL for XAN and 3-MeOXAN, respectively. Recovery from nanocapsules ranges from 99.6% to 102.8% for XAN and 98.8% to 102.4% for 3-MeOXAN. Repeatability (intra-assay precision) is acceptable with relative standard deviation values of 1.2% for XAN and 0.3% for 3-MeOXAN

    Identifying critically important vascular access outcomes for trials in haemodialysis : an international survey with patients, caregivers and health professionals

    Get PDF
    BACKGROUND: Vascular access outcomes reported across haemodialysis (HD) trials are numerous, heterogeneous and not always relevant to patients and clinicians. This study aimed to identify critically important vascular access outcomes. METHOD: Outcomes derived from a systematic review, multi-disciplinary expert panel and patient input were included in a multilanguage online survey. Participants rated the absolute importance of outcomes using a 9-point Likert scale (7-9 being critically important). The relative importance was determined by a best-worst scale using multinomial logistic regression. Open text responses were analysed thematically. RESULTS: The survey was completed by 873 participants [224 (26%) patients/caregivers and 649 (74%) health professionals] from 58 countries. Vascular access function was considered the most important outcome (mean score 7.8 for patients and caregivers/8.5 for health professionals, with 85%/95% rating it critically important, and top ranked on best-worst scale), followed by infection (mean 7.4/8.2, 79%/92% rating it critically important, second rank on best-worst scale). Health professionals rated all outcomes of equal or higher importance than patients/caregivers, except for aneurysms. We identified six themes: necessity for HD, applicability across vascular access types, frequency and severity of debilitation, minimizing the risk of hospitalization and death, optimizing technical competence and adherence to best practice and direct impact on appearance and lifestyle. CONCLUSIONS: Vascular access function was the most critically important outcome among patients/caregivers and health professionals. Consistent reporting of this outcome across trials in HD will strengthen their value in supporting vascular access practice and shared decision making in patients requiring HD

    Neutron cryo-crystallography captures the protonation state of ferryl heme in a peroxidase

    Get PDF
    Heme enzymes activate oxygen through formation of transient iron-oxo (ferryl) intermediates of the heme iron. A long-standing question has been the nature of the iron-oxygen bond and, in particular, the protonation state. We present neutron structures of the ferric derivative of cytochrome c peroxidase and its ferryl intermediate; these allow direct visualization of protonation states. We demonstrate that the ferryl heme is an Fe(IV)=O species and is not protonated. Comparison of the structures shows that the distal histidine becomes protonated on formation of the ferryl intermediate, which has implications for the understanding of O–O bond cleavage in heme enzymes. The structures highlight the advantages of neutron cryo-crystallography in probing reaction mechanisms and visualizing protonation states in enzyme intermediates
    corecore