80 research outputs found

    What Is the Evidence Base for Climate-Smart Agriculture in East and Southern Africa? A Systematic Map

    Get PDF
    More than 500 million USD will soon be invested in climate-smart agriculture (CSA) programmes in sub-Saharan Africa. Improving smallholder farm management is the core of most of these programmes. However, there has been no comprehensive information available to evaluate how changing agricultural practices increases food production, improves resilience of farming systems and livelihoods, and mitigates climate change—the goals of CSA. Here, we present a systematic map—an overview of the availability of scientific evidence—for CSA in five African countries: Tanzania, Malawi, Mozambique, Zimbabwe and Zambia. We conducted a systematic literature search of the effects of 102 technologies, including farm management practices (e.g., leguminous intercropped agroforestry, increased protein content of livestock diets, etc.), on 57 indicators consistent with CSA goals (e.g., yield, water use efficiency, carbon sequestration, etc.) as part of an effort called the "CSA Compendium". Our search of peer-reviewed articles in Web of Science and Scopus produced 150,567 candidate papers across developing countries in the global tropics. We screened titles, abstracts and full texts against predetermined inclusion criteria, for example that the investigation took place in a tropical developing country and contains primary data on how both a CSA practice and non-CSA control affect a preselected indicator. More than 1500 papers met these criteria from Africa, of which, 153 contained data collected in one of the five countries. Mapping the studies shows geographic and topical clustering in a few locations, around relatively few measures of CSA and for a limited number of commodities, indicating potential for skewed results and highlighting gaps in the evidence. This study sets the baseline for the availability of evidence to support CSA programming in the five countries

    An agenda for integrated system-wide interdisciplinary agri-food research

    Get PDF
    © 2017 The Author(s)This paper outlines the development of an integrated interdisciplinary approach to agri-food research, designed to address the ‘grand challenge’ of global food security. Rather than meeting this challenge by working in separate domains or via single-disciplinary perspectives, we chart the development of a system-wide approach to the food supply chain. In this approach, social and environmental questions are simultaneously addressed. Firstly, we provide a holistic model of the agri-food system, which depicts the processes involved, the principal inputs and outputs, the actors and the external influences, emphasising the system’s interactions, feedbacks and complexities. Secondly, we show how this model necessitates a research programme that includes the study of land-use, crop production and protection, food processing, storage and distribution, retailing and consumption, nutrition and public health. Acknowledging the methodological and epistemological challenges involved in developing this approach, we propose two specific ways forward. Firstly, we propose a method for analysing and modelling agri-food systems in their totality, which enables the complexity to be reduced to essential components of the whole system to allow tractable quantitative analysis using LCA and related methods. This initial analysis allows for more detailed quantification of total system resource efficiency, environmental impact and waste. Secondly, we propose a method to analyse the ethical, legal and political tensions that characterise such systems via the use of deliberative fora. We conclude by proposing an agenda for agri-food research which combines these two approaches into a rational programme for identifying, testing and implementing the new agri-technologies and agri-food policies, advocating the critical application of nexus thinking to meet the global food security challenge

    Mapping and linking supply- and demand-side measures in climate-smart agriculture. A review

    Get PDF
    Climate change and food security are two of humanity’s greatest challenges and are highly interlinked. On the one hand, climate change puts pressure on food security. On the other hand, farming significantly contributes to anthropogenic greenhouse gas emissions. This calls for climate-smart agriculture—agriculture that helps to mitigate and adapt to climate change. Climate-smart agriculture measures are diverse and include emission reductions, sink enhancements, and fossil fuel offsets for mitigation. Adaptation measures include technological advancements, adaptive farming practices, and financial management. Here, we review the potentials and trade-offs of climate-smart agricultural measures by producers and consumers. Our two main findings are as follows: (1) The benefits of measures are often site-dependent and differ according to agricultural practices (e.g., fertilizer use), environmental conditions (e.g., carbon sequestration potential), or the production and consumption of specific products (e.g., rice and meat). (2) Climate-smart agricultural measures on the supply side are likely to be insufficient or ineffective if not accompanied by changes in consumer behavior, as climate-smart agriculture will affect the supply of agricultural commodities and require changes on the demand side in response. Such linkages between demand and supply require simultaneous policy and market incentives. It, therefore, requires interdisciplinary cooperation to meet the twin challenge of climate change and food security. The link to consumer behavior is often neglected in research but regarded as an essential component of climate-smart agriculture. We argue for not solely focusing research and implementation on one-sided measures but designing good, site-specific combinations of both demand- and supply-side measures to use the potential of agriculture more effectively to mitigate and adapt to climate change

    Nitrogen rate strategies for reducing yield-scaled nitrous oxide emissions in maize

    No full text
    Mitigating nitrogen (N) losses from agriculture without negatively impacting crop productivity is a pressing environmental and economic challenge. Reductions in N fertilizer rate are often highlighted as a solution, yet the degree to which crop yields and economic returns may be impacted at the field-level remains unclear, in part due to limited data availability. Farmers are risk averse and potential yield losses may limit the success of voluntary N loss mitigation protocols, thus understanding field-level yield tradeoffs is critical to inform policy development. Using a case study of soil N2O mitigation in the US Midwest, we conducted an ex-post assessment of two economic and two environmental N rate reduction strategies to identify promising practices for maintaining maize yields and economic returns while reducing N2O emissions per unit yield (i.e. yield-scaled emissions) compared to an assumed baseline N input level. Maize yield response data from 201 on-farm N rate experiments were combined with an empirical equation predicting N2O emissions as a function of N rate. Results indicate that the economic strategy aimed at maximizing returns to N (MRTN) led to moderate but consistent reductions in yield-scaled N2O emissions with small negative impacts on yield and slight increases in median returns. The economic optimum N rate strategy reduced yield-scaled N2O emissions in 75% of cases but increased them otherwise, challenging the assumption that this strategy will automatically reduce environmental impacts per unit production. Both environmental strategies, one designed to increase N recovery efficiency and one to balance N inputs with grain N removal, further reduced yield-scaled N2O emissions but were also associated with negative yield penalties and decreased returns. These results highlight the inherent tension between achieving agronomic and economic goals while reducing environmental impacts which is often overlooked in policy discussions. To enable the development of more scalable environmental N loss mitigation strategies, yield tradeoffs occurring at the critical point of adoption (i.e. the farm-level) should be considered
    • …
    corecore