108 research outputs found

    An inhibitory pull-push circuit in frontal cortex.

    Get PDF
    Push-pull is a canonical computation of excitatory cortical circuits. By contrast, we identify a pull-push inhibitory circuit in frontal cortex that originates in vasoactive intestinal polypeptide (VIP)-expressing interneurons. During arousal, VIP cells rapidly and directly inhibit pyramidal neurons; VIP cells also indirectly excite these pyramidal neurons via parallel disinhibition. Thus, arousal exerts a feedback pull-push influence on excitatory neurons-an inversion of the canonical push-pull of feedforward input

    Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    Get PDF
    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the detection of lipid peroxidation in the cell membranes

    A theory of how active behavior stabilises neural activity: neural gain modulation by closed-loop environmental feedback

    Get PDF
    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone

    Evaluating the effects of increasing physical activity to optimize rehabilitation outcomes in hospitalized older adults (MOVE Trial): Study protocol for a randomized controlled trial

    Get PDF
    Background: Older adults who have received inpatient rehabilitation often have significant mobility disability at discharge. Physical activity levels in rehabilitation are also low. It is hypothesized that providing increased physical activity to older people receiving hospital-based rehabilitation will lead to better mobility outcomes at discharge. Methods/Design: A single blind, parallel-group, multisite randomized controlled trial with blinded assessment of outcome and intention-to-treat analysis. The cost effectiveness of the intervention will also be examined. Older people (age >60 years) undergoing inpatient rehabilitation to improve mobility will be recruited from geriatric rehabilitation units at two Australian hospitals. A computer-generated blocked stratified randomization sequence will be used to assign 198 participants in a 1:1 ratio to either an 'enhanced physical activity' (intervention) group or a 'usual care plus' (control) group for the duration of their inpatient stay. Participants will receive usual care and either spend time each week performing additional physical activities such as standing or walking (intervention group) or performing an equal amount of social activities that have minimal impact on mobility such as card and board games (control group). Self-selected gait speed will be measured using a 6-meter walk test at discharge (primary outcome) and 6 months follow-up (secondary outcome). The study is powered to detect a 0.1 m/sec increase in self-selected gait speed in the intervention group at discharge. Additional measures of mobility (Timed Up and Go, De Morton Mobility Index), function (Functional Independence Measure) and quality of life will be obtained as secondary outcomes at discharge and tertiary outcomes at 6 months follow-up. The trial commenced recruitment on 28 January 2014. Discussion: This study will evaluate the efficacy and cost effectiveness of increasing physical activity in older people during inpatient rehabilitation. These results will assist in the development of evidenced-based rehabilitation programs for this population. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12613000884707(Date of registration 08 August 2013); ClinicalTrials.gov Identifier NCT01910740(Date of registration 22 July 2013)

    Optimal central-place foraging by beavers: Tree-size selection in relation to defensive chemicals of quaking aspen

    Full text link
    At a newly occupied pond, beavers preferentially felled aspen smaller than 7.5 cm in diameter and selected against larger size classes. After one year of cutting, 10% of the aspen had been cut and 14% of the living aspen exhibited the juvenile growth form. A phenolic compound which may act as a deterrent to beavers was found in low concentrations in aspen bark, and there was no significant regression of relative concentration of this compound on tree diameter. At a pond which had been intermittently occupied by beavers for over 20 years, beavers selected against aspen smaller than 4.5 cm in diameter, and selected in favor of aspen larger than 19.5 cm in diameter. After more than 28 years of cutting at this site, 51% of the aspen had been cut and 49% of the living aspen were juvenileform. The phenolic compound was found in significantly higher concentrations in aspen bark than at the newly occupied site, and there was a significant negative regression of relative concentration on tree diameter. The results of this study show that responses to browsing by trees place constraints on the predictive value of standard energy-based optimal foraging models, and limitations on the use of such models. Future models should attempt to account for inducible responses of plants to damage and increases in concentrations of secondary metabolites through time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47775/1/442_2004_Article_BF00379963.pd

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    Morphological characterization of bushy cells and their inputs in the laboratory mouse (Mus musculus) anteroventral cochlear nucleus.

    Get PDF
    PMC3753269Spherical and globular bushy cells of the AVCN receive huge auditory nerve endings specialized for high fidelity neural transmission in response to acoustic events. Recent studies in mice and other rodent species suggest that the distinction between bushy cell subtypes is not always straightforward. We conducted a systematic investigation of mouse bushy cells along the rostral-caudal axis in an effort to understand the morphological variation that gives rise to reported response properties in mice. We combined quantitative light and electron microscopy to investigate variations in cell morphology, immunostaining, and the distribution of primary and non-primary synaptic inputs along the rostral-caudal axis. Overall, large regional differences in bushy cell characteristics were not found; however, rostral bushy cells received a different complement of axosomatic input compared to caudal bushy cells. The percentage of primary auditory nerve terminals was larger in caudal AVCN, whereas non-primary excitatory and inhibitory inputs were more common in rostral AVCN. Other ultrastructural characteristics of primary auditory nerve inputs were similar across the rostral and caudal AVCN. Cross sectional area, postsynaptic density length and curvature, and mitochondrial volume fraction were similar for axosomatic auditory nerve terminals, although rostral auditory nerve terminals contained a greater concentration of synaptic vesicles near the postsynaptic densities. These data demonstrate regional differences in synaptic organization of inputs to mouse bushy cells rather than the morphological characteristic of the cells themselves.JH Libraries Open Access Fun

    Factors associated with improved walking in older people during hospital rehabilitation: secondary analysis of a randomized controlled trial

    Get PDF
    BACKGROUND: Older people are often admitted for rehabilitation to improve walking, yet not everyone improves. The aim of this study was to determine key factors associated with a positive response to hospital-based rehabilitation in older people. METHODS: This was a secondary data analysis from a multisite randomized controlled trial. Older people (n= 198, median age 80.9 years, IQR 76.6- 87.2) who were admitted to geriatric rehabilitation wards with a goal to improve walking were recruited. Participants were randomized to receive additional daily physical therapy focused on mobility (n = 99), or additional social activities (n = 99). Self-selected gait speed was measured on admission and discharge. Four participants withdrew. People who changed gait speed ≥0.1 m/s were classified as 'responders' (n = 130); those that changed <0.1m/s were classified as 'non-responders' (n = 64). Multivariable logistic regression explored the association of six pre-selected participant factors (age, baseline ambulation status, frailty, co-morbidities, cognition, depression) and two therapy factors (daily supervised upright activity time, rehabilitation days) and response. RESULTS: Responding to rehabilitation was associated with the number of days in rehabilitation (OR 1.04; 95% CI 1.00 to 1.08; p = .039) and higher Mini Mental State Examination scores (OR 1.07, 95% CI 1.00 - 1.14; p = .048). No other factors were found to have association with responding to rehabilitation. CONCLUSION: In older people with complex health problems or multi-morbidities, better cognition and a longer stay in rehabilitation were associated with a positive improvement in walking speed. Further research to explore who best responds to hospital-based rehabilitation and what interventions improve rehabilitation outcomes is warranted. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12613000884707; ClinicalTrials.gov Identifier NCT01910740
    corecore