299 research outputs found

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    Anoxia- and hypoxia-induced expression of LDH-A* in the Amazon Oscar, Astronotus crassipinis

    Get PDF
    Adaptation or acclimation to hypoxia occurs via the modulation of physiologically relevant genes, such as erythropoietin, transferrin, vascular endothelial growth factor, phosphofructokinase and lactate dehydrogenase A. In the present study, we have cloned, sequenced and examined the modulation of the LDH-A gene after an Amazonian fish species, Astronotus crassipinis (the Oscar), was exposed to hypoxia and anoxia. In earlier studies, we have discovered that adults of this species are extremely tolerant to hypoxia and anoxia, while the juveniles are less tolerant. Exposure of juveniles to acute hypoxia and anoxia resulted in increased LDH-A gene expression in skeletal and cardiac muscles. When exposed to graded hypoxia juveniles show decreased LDH-A expression. In adults, the levels of LDH-A mRNA did not increase in hypoxic or anoxic conditions. Our results demonstrate that, when given time for acclimation, fish at different life-stages are able to respond differently to survive hypoxic episodes

    The Role of LDH Serum Levels in Predicting Global Outcome in HCC Patients Undergoing TACE: Implications for Clinical Management

    Get PDF
    In many tumor types serum lactate dehydrogenase (LDH) levels is an indirect marker of tumor hypoxia, neo-angiogenesis and worse prognosis. However data about hepatocellular carcinoma (HCC) are lacking in the clinical setting of patients undergoing transarterial-chemoembolization (TACE) in whom hypoxia and neo-angiogenesis may represent a molecular key to treatment failure. Aim of our analysis was to evaluate the role of LDH pre-treatment levels in determining clinical outcome for patients with HCC receiving TACE. One hundred and fourteen patients were available for our analysis. For all patients LDH values were collected within one month before the procedure. We divided our patients into two groups, according to LDH serum concentration registered before TACE (first: LDH≤450 U/l 84 patients; second: LDH>450 U/l 30 patients). Patients were classified according to the variation in LDH serum levels pre- and post-treatment (increased: 62 patients vs. decreased 52 patients). No statistically significant differences were found between the groups for all clinical characteristics analyzed (gender, median age, performance status ECOG, staging systems). In patients with LDH values below 450 U/l median time to progression (TTP) was 16.3 months, whereas it was of 10.1 months in patients above the cut-off (p = 0.0085). Accordingly median overall survival (OS) was 22.4 months and 11.7 months (p = 0.0049). In patients with decreased LDH values after treatment median TTP was 12.4 months, and median OS was 22.1 months, whereas TTP was 9.1 months and OS was 9.5 in patients with increased LDH levels (TTP: p = 0.0087; OS: p<0.0001). In our experience, LDH seemed able to predict clinical outcome for HCC patients undergoing TACE. Given the correlation between LDH levels and tumor angiogenesis we can speculate that patients with high LDH pretreatment levels may be optimal candidates for clinical trial exploring a multimodality treatment approach with TACE and anti-VEGF inhibitors in order to improve TTP and OS

    Linking Hydrothermal Geochemistry to Organismal Physiology: Physiological Versatility in Riftia pachyptila from Sedimented and Basalt-hosted Vents

    Get PDF
    Much of what is known regarding Riftia pachyptila physiology is based on the wealth of studies of tubeworms living at diffuse flows along the fast-spreading, basalt-hosted East Pacific Rise (EPR). These studies have collectively suggested that Riftia pachyptila and its chemoautotrophic symbionts are physiologically specialized, highly productive associations relying on hydrogen sulfide and oxygen to generate energy for carbon fixation, and the symbiont's nitrate reduction to ammonia for energy and biosynthesis. However, Riftia also flourish in sediment-hosted vents, which are markedly different in geochemistry than basalt-hosted systems. Here we present data from shipboard physiological studies and global quantitative proteomic analyses of Riftia pachyptila trophosome tissue recovered from tubeworms residing in the EPR and the Guaymas basin, a sedimented, hydrothermal vent field. We observed marked differences in symbiont nitrogen metabolism in both the respirometric and proteomic data. The proteomic data further suggest that Riftia associations in Guaymas may utilize different sulfur compounds for energy generation, may have an increased capacity for energy storage, and may play a role in degrading exogenous organic carbon. Together these data reveal that Riftia symbionts are far more physiologically plastic than previously considered, and that -contrary to previous assertions- Riftia do assimilate reduced nitrogen in some habitats. These observations raise new hypotheses regarding adaptations to the geochemical diversity of habitats occupied by Riftia, and the degree to which the environment influences symbiont physiology and evolution

    Conformation-regulated mechanosensory control via titin domains in cardiac muscle

    Get PDF
    The giant filamentous protein titin is ideally positioned in the muscle sarcomere to sense mechanical stimuli and transform them into biochemical signals, such as those triggering cardiac hypertrophy. In this review, we ponder the evidence for signaling hotspots along the titin filament involved in mechanosensory control mechanisms. On the way, we distinguish between stress and strain as triggers of mechanical signaling events at the cardiac sarcomere. Whereas the Z-disk and M-band regions of titin may be prominently involved in sensing mechanical stress, signaling hotspots within the elastic I-band titin segment may respond primarily to mechanical strain. Common to both stress and strain sensor elements is their regulation by conformational changes in protein domains

    Expression and Putative Function of Innate Immunity Genes under in situ Conditions in the Symbiotic Hydrothermal Vent Tubeworm Ridgeia piscesae

    Get PDF
    The relationships between hydrothermal vent tubeworms and sulfide-oxidizing bacteria have served as model associations for understanding chemoautotrophy and endosymbiosis. Numerous studies have focused on the physiological and biochemical adaptations that enable these symbioses to sustain some of the highest recorded carbon fixation rates ever measured. However, far fewer studies have explored the molecular mechanisms underlying the regulation of host and symbiont interactions, specifically those mediated by the innate immune system of the host. To that end, we conducted a series of studies where we maintained the tubeworm, Ridgeia piscesae, in high-pressure aquaria and examined global and quantitative changes in gene expression via high-throughput transcriptomics and quantitative real-time PCR (qPCR). We analyzed over 32,000 full-length expressed sequence tags as well as 26 Mb of transcript sequences from the trophosome (the organ that houses the endosymbiotic bacteria) and the plume (the gas exchange organ in contact with the free-living microbial community). R. piscesae maintained under conditions that promote chemoautotrophy expressed a number of putative cell signaling and innate immunity genes, including pattern recognition receptors (PRRs), often associated with recognizing microbe-associated molecular patterns (MAMPs). Eighteen genes involved with innate immunity, cell signaling, cell stress and metabolite exchange were further analyzed using qPCR. PRRs, including five peptidoglycan recognition proteins and a Toll-like receptor, were expressed significantly higher in the trophosome compared to the plume. Although PRRs are often associated with mediating host responses to infection by pathogens, the differences in expression between the plume and trophosome also implicate similar mechanisms of microbial recognition in interactions between the host and symbiont. We posit that regulation of this association involves a molecular “dialogue” between the partners that includes interactions between the host’s innate immune system and the symbiont

    Metabolites of Purine Nucleoside Phosphorylase (NP) in Serum Have the Potential to Delineate Pancreatic Adenocarcinoma

    Get PDF
    Pancreatic Adenocarcinoma (PDAC), the fourth highest cause of cancer related deaths in the United States, has the most aggressive presentation resulting in a very short median survival time for the affected patients. Early detection of PDAC is confounded by lack of specific markers that has motivated the use of high throughput molecular approaches to delineate potential biomarkers. To pursue identification of a distinct marker, this study profiled the secretory proteome in 16 PDAC, 2 carcinoma in situ (CIS) and 7 benign patients using label-free mass spectrometry coupled to 1D-SDS-PAGE and Strong Cation-Exchange Chromatography (SCX). A total of 431 proteins were detected of which 56 were found to be significantly elevated in PDAC. Included in this differential set were Parkinson disease autosomal recessive, early onset 7 (PARK 7) and Alpha Synuclein (aSyn), both of which are known to be pathognomonic to Parkinson's disease as well as metabolic enzymes like Purine Nucleoside Phosphorylase (NP) which has been exploited as therapeutic target in cancers. Tissue Microarray analysis confirmed higher expression of aSyn and NP in ductal epithelia of pancreatic tumors compared to benign ducts. Furthermore, extent of both aSyn and NP staining positively correlated with tumor stage and perineural invasion while their intensity of staining correlated with the existence of metastatic lesions in the PDAC tissues. From the biomarker perspective, NP protein levels were higher in PDAC sera and furthermore serum levels of its downstream metabolites guanosine and adenosine were able to distinguish PDAC from benign in an unsupervised hierarchical classification model. Overall, this study for the first time describes elevated levels of aSyn in PDAC as well as highlights the potential of evaluating NP protein expression and levels of its downstream metabolites to develop a multiplex panel for non-invasive detection of PDAC
    corecore