20 research outputs found

    Diabetes with Hypertension as Risk Factors for Adult Dengue Hemorrhagic Fever in a Predominantly Dengue Serotype 2 Epidemic: A Case Control Study

    Get PDF
    Dengue is a major vector borne disease in the tropical and subtropical regions. An estimated 50 million infections occur per annum in over 100 countries. A severe form of dengue, characterized by bleeding and plasma leakage, known as dengue hemorrhagic fever (DHF) is estimated to occur in 1–5% of hospitalized cases. It can be fatal if unrecognized and not treated in a timely manner. Previous studies had found a number of risk factors for DHF. However, screening and clinical management strategies based on these risk factors may not be applicable to all populations and epidemics of different serotypes. In this study, we found significant association between DHF and diabetes mellitus and diabetes mellitus with hypertension during the epidemic of predominantly serotype 2 (year 2007 and 2008), but not during the epidemic of predominantly serotype 1 (year 2006). Diabetes mellitus and hypertension are prevalent in Singapore and most parts of South-East Asia, where dengue is endemic. Therefore, it is important to address the risk effect of these co-morbidities on the development of DHF so as to reduce morbidity and mortality. Our findings may have impact on screening and clinical management of dengue patients, when confirmed in more studies

    Severity of acute hepatitis and its outcome in patients with dengue fever in a tertiary care hospital Karachi, Pakistan (South Asia)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver injury due to dengue viral infection is not uncommon. Acute liver injury is a severe complicating factor in dengue, predisposing to life-threatening hemorrhage, Disseminated Intravascular Coagulation (DIC) and encephalopathy. Therefore we sought to determine the frequency of hepatitis in dengue infection and to compare the outcome (length of stay, in hospital mortality, complications) between patients of Dengue who have mild/moderate (ALT 23-300 IU/L) v/s severe acute hepatitis (ALT > 300 IU/L).</p> <p>Methods</p> <p>A Cohort study of inpatients with dengue viral infection done at Aga Khan University Hospital Karachi. All patients (≥ 14 yrs age) admitted with diagnosis of Dengue Fever (DF), Dengue Hemorrhagic Fever (DHF) or Dengue Shock Syndrome (DSS) were included. Chi square test was used to compare categorical variables and fischer exact test where applicable. Survival analysis (Cox regression and log rank) for primary outcome was done. Student t test was used to compare continuous variables. A p value of less than or equal to 0.05 was taken as significant.</p> <p>Results</p> <p>Six hundred and ninety nine patients were enrolled, including 87% (605) patients with DF and 13% (94) patients with DHF or DSS. Liver functions tests showed median ALT of 88.50 IU/L; IQR 43.25-188 IU/L, median AST of 174 IU/L; IQR 87-371.5 IU/L and median T.Bil of 0.8 mg/dl; IQR 0.6-1.3 mg/dl. Seventy one percent (496) had mild to moderate hepatitis and 15% (103) had severe hepatitis. Mean length of stay (LOS) in patients with mild/moderate hepatitis was 3.63 days v.s 4.3 days in those with severe hepatitis (P value 0.002). Overall mortality was 33.3% (n = 6) in mild/moderate hepatitis vs 66.7% (n = 12) in severe hepatitis group (p value < 0.001). Cox regression analysis also showed significantly higher mortality in severe hepatitis group (H.R (4.91; 95% CI 1.74-13.87 and P value 0.003) and in DHF/DSS (5.43; CI 1.86-15.84 and P value 0.002). There was a significant difference for the complications like Bleeding (P value < 0.001), Acute Renal failure (ARF) (P value 0.002), Acalculus cholecystitis (P value 0.04) and encephalopathy (P value 0.02) in mild/moderate and Severe hepatitis groups respectively.</p> <p>Conclusion</p> <p>Severe hepatitis (SGPT>300IU) in Dengue is associated with prolonged LOS, mortality, bleeding and RF.</p

    Inflammatory Gene Regulatory Networks in Amnion Cells Following Cytokine Stimulation: Translational Systems Approach to Modeling Human Parturition

    Get PDF
    A majority of the studies examining the molecular regulation of human labor have been conducted using single gene approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to human amnion mesenchymal cells (AMCs) stimulated with interleukin-1β, and differentially expressed transcripts were subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation gene expression signature. Binding motifs for nuclear factor-κB were prominent in the gene interaction and regulatory networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in cellular responses to labor-associated signals

    Determinants of recovery from post-COVID-19 dyspnoea: analysis of UK prospective cohorts of hospitalised COVID-19 patients and community-based controls

    Get PDF
    Background The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01–1.03), male (1.54, 1.16–2.04), neither obese nor severely obese (1.82, 1.06–3.13 and 4.19, 2.14–8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09–2.22) or cardiovascular disease (1.33, 1.00–1.79), and shorter hospital admission (1.01 per day, 1.00–1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care. COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF

    Trypanosomatid comparative genomics: contributions to the study of parasite biology and different parasitic diseases

    Full text link

    A saturated map of common genetic variants associated with human height

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes(1). Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel(2)) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants

    A saturated map of common genetic variants associated with human height.

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: a prospective observational study

    Get PDF
    Background No effective pharmacological or non-pharmacological interventions exist for patients with long COVID. We aimed to describe recovery 1 year after hospital discharge for COVID-19, identify factors associated with patient-perceived recovery, and identify potential therapeutic targets by describing the underlying inflammatory profiles of the previously described recovery clusters at 5 months after hospital discharge. Methods The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a prospective, longitudinal cohort study recruiting adults (aged ≥18 years) discharged from hospital with COVID-19 across the UK. Recovery was assessed using patient-reported outcome measures, physical performance, and organ function at 5 months and 1 year after hospital discharge, and stratified by both patient-perceived recovery and recovery cluster. Hierarchical logistic regression modelling was performed for patient-perceived recovery at 1 year. Cluster analysis was done using the clustering large applications k-medoids approach using clinical outcomes at 5 months. Inflammatory protein profiling was analysed from plasma at the 5-month visit. This study is registered on the ISRCTN Registry, ISRCTN10980107, and recruitment is ongoing. Findings 2320 participants discharged from hospital between March 7, 2020, and April 18, 2021, were assessed at 5 months after discharge and 807 (32·7%) participants completed both the 5-month and 1-year visits. 279 (35·6%) of these 807 patients were women and 505 (64·4%) were men, with a mean age of 58·7 (SD 12·5) years, and 224 (27·8%) had received invasive mechanical ventilation (WHO class 7–9). The proportion of patients reporting full recovery was unchanged between 5 months (501 [25·5%] of 1965) and 1 year (232 [28·9%] of 804). Factors associated with being less likely to report full recovery at 1 year were female sex (odds ratio 0·68 [95% CI 0·46–0·99]), obesity (0·50 [0·34–0·74]) and invasive mechanical ventilation (0·42 [0·23–0·76]). Cluster analysis (n=1636) corroborated the previously reported four clusters: very severe, severe, moderate with cognitive impairment, and mild, relating to the severity of physical health, mental health, and cognitive impairment at 5 months. We found increased inflammatory mediators of tissue damage and repair in both the very severe and the moderate with cognitive impairment clusters compared with the mild cluster, including IL-6 concentration, which was increased in both comparisons (n=626 participants). We found a substantial deficit in median EQ-5D-5L utility index from before COVID-19 (retrospective assessment; 0·88 [IQR 0·74–1·00]), at 5 months (0·74 [0·64–0·88]) to 1 year (0·75 [0·62–0·88]), with minimal improvements across all outcome measures at 1 year after discharge in the whole cohort and within each of the four clusters. Interpretation The sequelae of a hospital admission with COVID-19 were substantial 1 year after discharge across a range of health domains, with the minority in our cohort feeling fully recovered. Patient-perceived health-related quality of life was reduced at 1 year compared with before hospital admission. Systematic inflammation and obesity are potential treatable traits that warrant further investigation in clinical trials. Funding UK Research and Innovation and National Institute for Health Research
    corecore