129 research outputs found

    Rational Redesign of Glucose Oxidase for Improved Catalytic Function and Stability

    Get PDF
    Glucose oxidase (GOx) is an enzymatic workhorse used in the food and wine industries to combat microbial contamination, to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species Aspergillus niger (A. niger) and Penicillium amagasakiense (P. amag.), which have both had their respective genes isolated and sequenced. GOx from A. niger is known to be more stable than GOx from P. amag., while GOx from P. amag. has a six-fold superior substrate affinity (KM) and nearly four-fold greater catalytic rate (kcat). Here we sought to combine genetic elements from these two varieties to produce an enzyme displaying both superior catalytic capacity and stability. A comparison of the genes from the two organisms revealed 17 residues that differ between their active sites and cofactor binding regions. Fifteen of these residues in a parental A. niger GOx were altered to either mirror the corresponding residues in P. amag. GOx, or mutated into all possible amino acids via saturation mutagenesis. Ultimately, four mutants were identified with significantly improved catalytic activity. A single point mutation from threonine to serine at amino acid 132 (mutant T132S, numbering includes leader peptide) led to a three-fold improvement in kcat at the expense of a 3% loss of substrate affinity (increase in apparent KM for glucose) resulting in a specify constant (kcat/KM) of 23.8 (mMβˆ’1 Β· sβˆ’1) compared to 8.39 for the parental (A. niger) GOx and 170 for the P. amag. GOx. Three other mutant enzymes were also identified that had improvements in overall catalysis: V42Y, and the double mutants T132S/T56V and T132S/V42Y, with specificity constants of 31.5, 32.2, and 31.8 mMβˆ’1 Β· sβˆ’1, respectively. The thermal stability of these mutants was also measured and showed moderate improvement over the parental strain

    Enhanced Brain Disposition and Effects of Ξ”9-Tetrahydrocannabinol in P-Glycoprotein and Breast Cancer Resistance Protein Knockout Mice

    Get PDF
    The ABC transporters P-glycoprotein (P-gp, Abcb1) and breast cancer resistance protein (Bcrp, Abcg2) regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Ξ”9-tetrahydrocannabinol (THC) has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cannabinoid-induced hypothermia than wild-type (WT) mice. Abcb1a/b (βˆ’/βˆ’), Abcg2 (βˆ’/βˆ’) and wild-type (WT) mice were injected with THC before brain and blood were collected and THC concentrations determined. Another cohort of mice was examined for THC-induced hypothermia by measuring rectal body temperature. Brain THC concentrations were higher in both Abcb1a/b (βˆ’/βˆ’) and Abcg2 (βˆ’/βˆ’) mice than WT mice. ABC transporter knockout mice exhibited delayed elimination of THC from the brain with the effect being more prominent in Abcg2 (βˆ’/βˆ’) mice. ABC transporter knockout mice were more sensitive to THC-induced hypothermia compared to WT mice. These results show P-gp and Bcrp prolong the brain disposition and hypothermic effects of THC and offer a novel mechanism for both genetic vulnerability to the psychoactive effects of cannabis and drug interactions between CNS therapies and cannabis

    Seasonal and Ontogenetic Changes in Movement Patterns of Sixgill Sharks

    Get PDF
    Understanding movement patterns is fundamental to population and conservation biology. The way an animal moves through its environment influences the dynamics of local populations and will determine how susceptible it is to natural or anthropogenic perturbations. It is of particular interest to understand the patterns of movement for species which are susceptible to human activities (e.g. fishing), or that exert a large influence on community structure, such as sharks.We monitored the patterns of movement of 34 sixgill sharks Hexanchus griseus using two large-scale acoustic arrays inside and outside Puget Sound, Washington, USA. Sixgill sharks were residents in Puget Sound for up to at least four years before making large movements out of the estuary. Within Puget Sound, sixgills inhabited sites for several weeks at a time and returned to the same sites annually. Across four years, sixgills had consistent seasonal movements in which they moved to the north from winter to spring and moved to the south from summer to fall. Just prior to leaving Puget Sound, sixgills altered their behavior and moved twice as fast among sites. Nineteen of the thirty-four sixgills were detected leaving Puget Sound for the outer coast. Three of these sharks returned to Puget Sound.For most large marine predators, we have a limited understanding of how they move through their environment, and this clouds our ability to successfully manage their populations and their communities. With detailed movement information, such as that being uncovered with acoustic monitoring, we can begin to quantify the spatial and temporal impacts of large predators within the framework of their ecosystems

    Revolutionizing Clinical Microbiology Laboratory Organization in Hospitals with In Situ Point-of-Care

    Get PDF
    BACKGROUND: Clinical microbiology may direct decisions regarding hospitalization, isolation and anti-infective therapy, but it is not effective at the time of early care. Point-of-care (POC) tests have been developed for this purpose. METHODS AND FINDINGS: One pilot POC-lab was located close to the core laboratory and emergency ward to test the proof of concept. A second POC-lab was located inside the emergency ward of a distant hospital without a microbiology laboratory. Twenty-three molecular and immuno-detection tests, which were technically undemanding, were progressively implemented, with results obtained in less than four hours. From 2008 to 2010, 51,179 tests yielded 6,244 diagnoses. The second POC-lab detected contagious pathogens in 982 patients who benefited from targeted isolation measures, including those undertaken during the influenza outbreak. POC tests prevented unnecessary treatment of patients with non-streptococcal tonsillitis (nβ€Š=β€Š1,844) and pregnant women negative for Streptococcus agalactiae carriage (nβ€Š=β€Š763). The cerebrospinal fluid culture remained sterile in 50% of the 49 patients with bacterial meningitis, therefore antibiotic treatment was guided by the molecular tests performed in the POC-labs. With regard to enterovirus meningitis, the mean length-of-stay of infected patients over 15 years old significantly decreased from 2008 to 2010 compared with 2005 when the POC was not in place (1.43Β±1.09 versus 2.91Β±2.31 days; pβ€Š=β€Š0.0009). Altogether, patients who received POC tests were immediately discharged nearly thrice as often as patients who underwent a conventional diagnostic procedure. CONCLUSIONS: The on-site POC-lab met physicians' needs and influenced the management of 8% of the patients that presented to emergency wards. This strategy might represent a major evolution of decision-making regarding the management of infectious diseases and patient care

    A review of trisomy X (47,XXX)

    Get PDF
    Trisomy X is a sex chromosome anomaly with a variable phenotype caused by the presence of an extra X chromosome in females (47,XXX instead of 46,XX). It is the most common female chromosomal abnormality, occurring in approximately 1 in 1,000 female births. As some individuals are only mildly affected or asymptomatic, it is estimated that only 10% of individuals with trisomy X are actually diagnosed. The most common physical features include tall stature, epicanthal folds, hypotonia and clinodactyly. Seizures, renal and genitourinary abnormalities, and premature ovarian failure (POF) can also be associated findings. Children with trisomy X have higher rates of motor and speech delays, with an increased risk of cognitive deficits and learning disabilities in the school-age years. Psychological features including attention deficits, mood disorders (anxiety and depression), and other psychological disorders are also more common than in the general population. Trisomy X most commonly occurs as a result of nondisjunction during meiosis, although postzygotic nondisjunction occurs in approximately 20% of cases. The risk of trisomy X increases with advanced maternal age. The phenotype in trisomy X is hypothesized to result from overexpression of genes that escape X-inactivation, but genotype-phenotype relationships remain to be defined. Diagnosis during the prenatal period by amniocentesis or chorionic villi sampling is common. Indications for postnatal diagnoses most commonly include developmental delays or hypotonia, learning disabilities, emotional or behavioral difficulties, or POF. Differential diagnosis prior to definitive karyotype results includes fragile X, tetrasomy X, pentasomy X, and Turner syndrome mosaicism. Genetic counseling is recommended. Patients diagnosed in the prenatal period should be followed closely for developmental delays so that early intervention therapies can be implemented as needed. School-age children and adolescents benefit from a psychological evaluation with an emphasis on identifying and developing an intervention plan for problems in cognitive/academic skills, language, and/or social-emotional development. Adolescents and adult women presenting with late menarche, menstrual irregularities, or fertility problems should be evaluated for POF. Patients should be referred to support organizations to receive individual and family support. The prognosis is variable, depending on the severity of the manifestations and on the quality and timing of treatment

    Mutagenesis-Mediated Virus Extinction: Virus-Dependent Effect of Viral Load on Sensitivity to Lethal Defection

    Get PDF
    Background: Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI) on progeny production of several RNA viruses under enhanced mutagenesis. Results: The effect of the mutagenic base analogue 5-fluorouracil (FU) on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV) can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI), or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV), but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV) and encephalomyocarditis virus (EMCV). The increase in mutation frequency and Shannon entropy (mutant spectrum complexity) as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results. Conclusions: (i) Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii) This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii) The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv) LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v) The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development. Β© 2012 Moreno et al.Centro de BiologΓ­a Molecular Severo Ochoa; Ministerio de Ciencia e InnovaciΓ³n (MICINN); FundaciΓ³n RamΓ³n ArecesPeer Reviewe

    A Synthesis of Tagging Studies Examining the Behaviour and Survival of Anadromous Salmonids in Marine Environments

    Get PDF
    This paper synthesizes tagging studies to highlight the current state of knowledge concerning the behaviour and survival of anadromous salmonids in the marine environment. Scientific literature was reviewed to quantify the number and type of studies that have investigated behaviour and survival of anadromous forms of Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar), brown trout (Salmo trutta), steelhead (Oncorhynchus mykiss), and cutthroat trout (Oncorhynchus clarkii). We examined three categories of tags including electronic (e.g. acoustic, radio, archival), passive (e.g. external marks, Carlin, coded wire, passive integrated transponder [PIT]), and biological (e.g. otolith, genetic, scale, parasites). Based on 207 papers, survival rates and behaviour in marine environments were found to be extremely variable spatially and temporally, with some of the most influential factors being temperature, population, physiological state, and fish size. Salmonids at all life stages were consistently found to swim at an average speed of approximately one body length per second, which likely corresponds with the speed at which transport costs are minimal. We found that there is relatively little research conducted on open-ocean migrating salmonids, and some species (e.g. masu [O. masou] and amago [O. rhodurus]) are underrepresented in the literature. The most common forms of tagging used across life stages were various forms of external tags, coded wire tags, and acoustic tags, however, the majority of studies did not measure tagging/handling effects on the fish, tag loss/failure, or tag detection probabilities when estimating survival. Through the interdisciplinary application of existing and novel technologies, future research examining the behaviour and survival of anadromous salmonids could incorporate important drivers such as oceanography, tagging/handling effects, predation, and physiology

    Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes

    Get PDF
    Despite global warming, total Antarctic sea ice coverage increased over 1979-2013. However, the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline. Mechanisms causing this discrepancy have so far remained elusive. Here we show that weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated by the models may contribute to this disparity. During austral summer, a strengthened jet leads to increased upwelling of cooler subsurface water and strengthened equatorward transport, conducive to increased sea ice. As the majority of models underestimate summer jet trends, this cooling process is underestimated compared with observations and is insufficient to offset warming in the models. Through the sea ice-albedo feedback, models produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed net cooling and sea ice increase. A realistic simulation of observed wind changes may be crucial for reproducing the recent observed sea ice increase

    Determinants of recovery from post-COVID-19 dyspnoea: analysis of UK prospective cohorts of hospitalised COVID-19 patients and community-based controls

    Get PDF
    Background The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01–1.03), male (1.54, 1.16–2.04), neither obese nor severely obese (1.82, 1.06–3.13 and 4.19, 2.14–8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09–2.22) or cardiovascular disease (1.33, 1.00–1.79), and shorter hospital admission (1.01 per day, 1.00–1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care. COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders
    • …
    corecore