114 research outputs found

    Protocol design and current status of CLIVIT: a randomized controlled multicenter relevance trial comparing clips versus ligatures in thyroid surgery

    Get PDF
    BACKGROUND: Annually, more than 90000 surgical procedures of the thyroid gland are performed in Germany. Strategies aimed at reducing the duration of the surgical procedure are relevant to patients and the health care system especially in the context of reducing costs. However, new techniques for quick and safe hemostasis have to be tested in clinically relevance randomized controlled trials before a general recommendation can be given. The current standard for occlusion of blood vessels in thyroid surgery is ligatures. Vascular clips may be a safe alternative but have not been investigated in a large RCT. METHODS/DESIGN: CLIVIT (Clips versus Ligatures in Thyroid Surgery) is an investigator initiated, multicenter, patient-blinded, two-group parallel relevance randomized controlled trial designed by the Study Center of the German Surgical Society. Patients scheduled for elective resection of at least two third of the gland for benign thyroid disease are eligible for participation. After surgical exploration patients are randomized intraoperatively into either the conventional ligature group, or into the clip group. The primary objective is to test for a relevant reduction in operating time (at least 15 min) when using the clip technique. Since April 2004, 121 of the totally required 420 patients were randomized in five centers. DISCUSSION: As in all trials the different forms of bias have to be considered, and as in this case, a surgical trial, the role of surgical expertise plays a key role, and will be documented and analyzed separately. This is the first randomized controlled multicenter relevance trial to compare different vessel occlusion techniques in thyroid surgery with adequate power and other detailed information about the design as well as framework. If significant, the results might be generalized and may change the current surgical practice

    CD40, autophagy and Toxoplasma gondii

    Full text link
    Toxoplasmagondii represents a pathogen that survives within host cells by preventing the endosomal-lysosomal compartments from fusing with the parasitophorous vacuoles. The dogma had been that the non-fusogenic nature of these vacuoles is irreversible. Recent studies revealed that this dogma is not correct. Cell-mediated immunity through CD40 re-routes the parasitophorous vacuoles to the lysosomal compartment by a process called autophagy. Autophagosome formation around the parasitophorous vacuole results in killing of the T. gondii. CD40-induced autophagy likely contributes to resistance against T. gondii particularly in neural tissue

    Gender Differences in Associations of Glutamate Decarboxylase 1 Gene (GAD1) Variants with Panic Disorder

    Get PDF
    Background: Panic disorder is common (5% prevalence) and females are twice as likely to be affected as males. The heritable component of panic disorder is estimated at 48%. Glutamic acid dehydrogenase GAD1, the key enzyme for the synthesis of the inhibitory and anxiolytic neurotransmitter GABA, is supposed to influence various mental disorders, including mood and anxiety disorders. In a recent association study in depression, which is highly comorbid with panic disorder, GAD1 risk allele associations were restricted to females. Methodology/Principal Findings: Nineteen single nucleotide polymorphisms (SNPs) tagging the common variation in GAD1 were genotyped in two independent gender and age matched case-control samples (discovery sample n = 478; replication sample n = 584). Thirteen SNPs passed quality control and were examined for gender-specific enrichment of risk alleles associated with panic disorder by using logistic regression including a genotype×gender interaction term. The latter was found to be nominally significant for four SNPs (rs1978340, rs3762555, rs3749034, rs2241165) in the discovery sample; of note, the respective minor/risk alleles were associated with panic disorder only in females. These findings were not confirmed in the replication sample; however, the genotype×gender interaction of rs3749034 remained significant in the combined sample. Furthermore, this polymorphism showed a nominally significant association with the Agoraphobic Cognitions Questionnaire sum score. Conclusions/Significance: The present study represents the first systematic evaluation of gender-specific enrichment of risk alleles of the common SNP variation in the panic disorder candidate gene GAD1. Our tentative results provide a possible explanation for the higher susceptibility of females to panic disorder

    In vivo and in silico determination of essential genes of Campylobacter jejuni

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the United Kingdom, the thermophilic <it>Campylobacter </it>species <it>C. jejuni </it>and <it>C. coli </it>are the most frequent causes of food-borne gastroenteritis in humans. While campylobacteriosis is usually a relatively mild infection, it has a significant public health and economic impact, and possible complications include reactive arthritis and the autoimmune diseases Guillain-Barré syndrome. The rapid developments in "omics" technologies have resulted in the availability of diverse datasets allowing predictions of metabolism and physiology of pathogenic micro-organisms. When combined, these datasets may allow for the identification of potential weaknesses that can be used for development of new antimicrobials to reduce or eliminate <it>C. jejuni </it>and <it>C. coli </it>from the food chain.</p> <p>Results</p> <p>A metabolic model of <it>C. jejuni </it>was constructed using the annotation of the NCTC 11168 genome sequence, a published model of the related bacterium <it>Helicobacter pylori</it>, and extensive literature mining. Using this model, we have used <it>in silico </it>Flux Balance Analysis (FBA) to determine key metabolic routes that are essential for generating energy and biomass, thus creating a list of genes potentially essential for growth under laboratory conditions. To complement this <it>in silico </it>approach, candidate essential genes have been determined using a whole genome transposon mutagenesis method. FBA and transposon mutagenesis (both this study and a published study) predict a similar number of essential genes (around 200). The analysis of the intersection between the three approaches highlights the shikimate pathway where genes are predicted to be essential by one or more method, and tend to be network hubs, based on a previously published <it>Campylobacter </it>protein-protein interaction network, and could therefore be targets for novel antimicrobial therapy.</p> <p>Conclusions</p> <p>We have constructed the first curated metabolic model for the food-borne pathogen <it>Campylobacter jejuni </it>and have presented the resulting metabolic insights. We have shown that the combination of <it>in silico </it>and <it>in vivo </it>approaches could point to non-redundant, indispensable genes associated with the well characterised shikimate pathway, and also genes of unknown function specific to <it>C. jejuni</it>, which are all potential novel <it>Campylobacter </it>intervention targets.</p

    Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression

    Get PDF
    Panic disorder (PD) has a lifetime prevalence of 2-4% and heritability estimates of 40%. The contributory genetic variants remain largely unknown, with few and inconsistent loci having been reported. The present report describes the largest genome-wide association study (GWAS) of PD to date comprising genome-wide genotype data of 2248 clinically well-characterized PD patients and 7992 ethnically matched controls. The samples originated from four European countries (Denmark, Estonia, Germany, and Sweden). Standard GWAS quality control procedures were conducted on each individual dataset, and imputation was performed using the 1000 Genomes Project reference panel. A meta-analysis was then performed using the Ricopili pipeline. No genome-wide significant locus was identified. Leave-one-out analyses generated highly significant polygenic risk scores (PRS) (explained variance of up to 2.6%). Linkage disequilibrium (LD) score regression analysis of the GWAS data showed that the estimated heritability for PD was 28.0-34.2%. After correction for multiple testing, a significant genetic correlation was found between PD and major depressive disorder, depressive symptoms, and neuroticism. A total of 255 single-nucleotide polymorphisms (SNPs) with p < 1 × 10-4 were followed up in an independent sample of 2408 PD patients and 228,470 controls from Denmark, Iceland and the Netherlands. In the combined analysis, SNP rs144783209 showed the strongest association with PD (pcomb = 3.10  × 10-7). Sign tests revealed a significant enrichment of SNPs with a discovery p-value of <0.0001 in the combined follow up cohort (p = 0.048). The present integrative analysis represents a major step towards the elucidation of the genetic susceptibility to PD

    The Stimulatory Gαs Protein Is Involved in Olfactory Signal Transduction in Drosophila

    Get PDF
    Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology, constituting a key difference between the olfactory systems of insects and other animals. While heteromeric insect ORs form ligand-activated non-selective cation channels in recombinant expression systems, the evidence for an involvement of cyclic nucleotides and G-proteins in odor reception is inconsistent. We addressed this question in vivo by analyzing the role of G-proteins in olfactory signaling using electrophysiological recordings. We found that Gαs plays a crucial role for odorant induced signal transduction in OR83b expressing olfactory sensory neurons, but not in neurons expressing CO2 responsive proteins GR21a/GR63a. Moreover, signaling of Drosophila ORs involved Gαs also in a heterologous expression system. In agreement with these observations was the finding that elevated levels of cAMP result in increased firing rates, demonstrating the existence of a cAMP dependent excitatory signaling pathway in the sensory neurons. Together, we provide evidence that Gαs plays a role in the OR mediated signaling cascade in Drosophila

    A Dynamic View of Domain-Motif Interactions

    Get PDF
    Many protein-protein interactions are mediated by domain-motif interaction, where a domain in one protein binds a short linear motif in its interacting partner. Such interactions are often involved in key cellular processes, necessitating their tight regulation. A common strategy of the cell to control protein function and interaction is by post-translational modifications of specific residues, especially phosphorylation. Indeed, there are motifs, such as SH2-binding motifs, in which motif phosphorylation is required for the domain-motif interaction. On the contrary, there are other examples where motif phosphorylation prevents the domain-motif interaction. Here we present a large-scale integrative analysis of experimental human data of domain-motif interactions and phosphorylation events, demonstrating an intriguing coupling between the two. We report such coupling for SH3, PDZ, SH2 and WW domains, where residue phosphorylation within or next to the motif is implied to be associated with switching on or off domain binding. For domains that require motif phosphorylation for binding, such as SH2 domains, we found coupled phosphorylation events other than the ones required for domain binding. Furthermore, we show that phosphorylation might function as a double switch, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. Evolutionary analysis shows that co-evolution of the motif and the proximal residues capable of phosphorylation predominates over other evolutionary scenarios, in which the motif appeared before the potentially phosphorylated residue, or vice versa. Our findings provide strengthening evidence for coupled interaction-regulation units, defined by a domain-binding motif and a phosphorylated residue

    Therapygenetics: using genetic markers to predict response to psychological treatment for mood and anxiety disorders

    Get PDF
    Considerable variation is evident in response to psychological therapies for mood and anxiety disorders. Genetic factors alongside environmental variables and gene-environment interactions are implicated in the etiology of these disorders and it is plausible that these same factors may also be important in predicting individual differences in response to psychological treatment. In this article, we review the evidence that genetic variation influences psychological treatment outcomes with a primary focus on mood and anxiety disorders. Unlike most past work, which has considered prediction of response to pharmacotherapy, this article reviews recent work in the field of therapygenetics, namely the role of genes in predicting psychological treatment response. As this is a field in its infancy, methodological recommendations are made and opportunities for future research are identified

    International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci

    Get PDF
    The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations. © 2019, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply
    corecore