2,873 research outputs found

    Continuous Forest Fire Propagation in a Local Small World Network Model

    Full text link
    This paper presents the development of a new continuous forest fire model implemented as a weighted local small-world network approach. This new approach was designed to simulate fire patterns in real, heterogeneous landscapes. The wildland fire spread is simulated on a square lattice in which each cell represents an area of the land's surface. The interaction between burning and non-burning cells, in the present work induced by flame radiation, may be extended well beyond nearest neighbors. It depends on local conditions of topography and vegetation types. An approach based on a solid flame model is used to predict the radiative heat flux from the flame generated by the burning of each site towards its neighbors. The weighting procedure takes into account the self-degradation of the tree and the ignition processes of a combustible cell through time. The model is tested on a field presenting a range of slopes and with data collected from a real wildfire scenario. The critical behavior of the spreading process is investigated

    Bouncing localized structures in a liquid-crystal light-valve experiment

    Get PDF
    Experimental evidence of bouncing localized structures in a nonlinear optical system is reported.Comment: 4 page

    Introduction: Localized Structures in Dissipative Media: From Optics to Plant Ecology

    Full text link
    Localised structures in dissipative appears in various fields of natural science such as biology, chemistry, plant ecology, optics and laser physics. The proposed theme issue is to gather specialists from various fields of non-linear science toward a cross-fertilisation among active areas of research. This is a cross-disciplinary area of research dominated by the nonlinear optics due to potential applications for all-optical control of light, optical storage, and information processing. This theme issue contains contributions from 18 active groups involved in localized structures field and have all made significant contributions in recent years.Comment: 14 pages, 0 figure, submitted to Phi. Trasaction Royal Societ

    The Professor Who Changed My Life: A Sesquicentennial Celebration of Educational Interaction at University of the Pacific

    Get PDF
    https://scholarlycommons.pacific.edu/pacific-pubs/1004/thumbnail.jp

    Towards a Better Understanding of the Local Attractor in Particle Swarm Optimization: Speed and Solution Quality

    Full text link
    Particle Swarm Optimization (PSO) is a popular nature-inspired meta-heuristic for solving continuous optimization problems. Although this technique is widely used, the understanding of the mechanisms that make swarms so successful is still limited. We present the first substantial experimental investigation of the influence of the local attractor on the quality of exploration and exploitation. We compare in detail classical PSO with the social-only variant where local attractors are ignored. To measure the exploration capabilities, we determine how frequently both variants return results in the neighborhood of the global optimum. We measure the quality of exploitation by considering only function values from runs that reached a search point sufficiently close to the global optimum and then comparing in how many digits such values still deviate from the global minimum value. It turns out that the local attractor significantly improves the exploration, but sometimes reduces the quality of the exploitation. As a compromise, we propose and evaluate a hybrid PSO which switches off its local attractors at a certain point in time. The effects mentioned can also be observed by measuring the potential of the swarm

    X-ray AGN in the XMM-LSS galaxy clusters: no evidence of AGN suppression

    Get PDF
    We present a study of the overdensity of X-ray selected AGN in 33 galaxy clusters in the XMM-LSS field, up to redhift z=1.05. Previous studies have shown that the presence of X-ray selected AGN in rich galaxy clusters is suppressed. In the current study we investigate the occurrence of X-ray selected AGN in low and moderate X-ray luminosity galaxy clusters. Due to the wide contiguous XMM-LSS survey area we are able to extend the study to the cluster outskirts. We therefore determine the projected overdensity of X-ray point-like sources out to 6r_{500} radius. To provide robust statistical results we also use a stacking analysis of the cluster projected overdensities. We investigate whether the observed X-ray overdensities are to be expected by estimating also the corresponding optical galaxy overdensities. We find a positive X-ray projected overdensity at the first radial bin, which is however of the same amplitude as that of optical galaxies. Therefore, no suppression of X-ray AGN activity with respect to the field is found, implying that the mechanisms responsible for the suppression are not so effective in lower density environments. After a drop to roughly the background level between 2 and 3r_{500}, the X-ray overdensity exhibits a rise at larger radii, significantly larger than the corresponding optical overdensity. Finally, using redshift information of all optical counterparts, we derive the spatial overdensity profile of the clusters. We find that the agreement between X-ray and optical overdensities in the first radial bin is also suggested in the 3-dimensional analysis. However, we argue that the X-ray overdensity "bump" at larger radial distance is probably a result of flux boosting by gravitational lensing of background QSOs. For high redshift clusters an enhancement of X-ray AGN activity in their outskirts is still possible.Comment: 16 pages. Accepted for publication in A&

    Universal shape law of stochastic supercritical bifurcations: Theory and experiments

    Full text link
    A universal law for the supercritical bifurcation shape of transverse one-dimensional (1D) systems in presence of additive noise is given. The stochastic Langevin equation of such systems is solved by using a Fokker-Planck equation leading to the expression for the most probable amplitude of the critical mode. From this universal expression, the shape of the bifurcation, its location and its evolution with the noise level are completely defined. Experimental results obtained for a 1D transverse Kerr-like slice subjected to optical feedback are in excellent agreement.Comment: 5 pages, 5 figure
    • …
    corecore