17 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Anais do V Encontro Brasileiro de Educomunicação: Educação midiática e políticas públicas

    Get PDF
    A presente coletânea, que chega ao público através de um suporte digital, tem como objetivo disponibilizar os papers, bem como os relatos de experiências educomunicativas apresentados durante o V ENCONTRO BRASILEIRO DE EDUCOMUNICAÇÃO, que teve como tema central: “Educação Midiática e Políticas Públicas”. O evento foi realizado em São Paulo, entre 19 e 21 de setembro de 2013, a partir de uma parceria entre o NCE/USP - Núcleo de Comunicação e Educação da USP, a Licenciatura em Educomunicação da ECA/USP, a ABPEducom – Associação Brasileira de Pesquisadores e Profissionais da Educomunicação e a FAPCOM – Faculdade Paulus de Tecnologia e Comunicação, que ofereceu seu campus, na Vila Mariana, para os atos do evento. Os presentes anais disponibilizam o texto de abertura, de autoria do coordenador geral do evento, denominado “Educação midiática e políticas públicas: vertentes históricas da emergência da Educomunicação na América Latina”. Na sequência, apresentam 61 papers sobre aspectos específicos da temática geral, resultantes de pesquisas na área, seguidos de 27 relatos de práticas educomunicativas, em nível nacional

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Trophic ecology of benthic fish assemblages in a lowland river in the Brazilian Amazon

    No full text
    Studies on the trophic ecology of fish have revealed considerable alimentary plasticity for the majority of ichthyofauna in tropical rivers. This leads to the prediction that diet reflects the availability of food in the environment, namely seasonal variation in the abundance and type of food resources. To examine this, we assess: (1) seasonal variation in the diet and trophic structure of assemblages of benthic fish inhabiting the main channel of a large floodplain river in the Brazilian Amazon, (2) seasonal changes in the availability of food resources, (3) the trophic response (food selectivity) of benthic species in relation to food availability and (4) niche overlap among benthic species. Data were collected during 2 rising and 2 receding phases. Aquatic insects, plant matter and detritus were the predominant items in the diet of assemblages of benthic fish. The majority of fish species changed their diet between seasons. The diets of Exallodontus aguanai and Sternarchella calhamazon were studied in detail and showed positive correlation with food resource availability. Feeding selectivity varied among seasons for these two species. Niche overlap between these two species was observed during only one receding season. Our results reveal the importance of aquatic insects in the predominantly omnivorous diet of the benthic fish assemblages. Trophic plasticity was also evident, possibly because of the seasonal availability of food items. These results underline the role that organic matter derived from floodplains plays in this aquatic system which is characterised as having naturally low autochthonous productivity. © 2019, Springer Nature B.V

    Reproductive allocation by Amazon fishes in relation to feeding strategy and hydrology

    No full text
    Seasonal environments favor the evolution of capital breeding, whereby reproduction uses surplus energy from resources acquired during an earlier period. Consequently, reproductive effort in capital breeders is expected to depend on traits associated with energy storage rather than environmental conditions at the time of reproduction. Based on a 15-year dataset, we investigate the effect of phenotype (body size and condition) and environmental conditions (intensity of hydrological seasons, predator density, and density of conspecifics) on fecundity three capital breeding fish species from the strongly seasonal Amazon River floodplain: Psectrogaster rutiloides, Triportheus angulatus, and Acestrorhynchus falcirostris. Fecundity of all three species was strongly correlated with phenotype and modulated by unfavorable environmental conditions during the period of reproduction, especially high density of conspecifics. Fecundity was negatively affected by the density of conspecifics for small females of A. falcirostris, and for T. angulatus females with poor body condition. Fecundity of P. rutiloides declined during periods of drought when density of conspecifics was highest. A clear tradeoff between quantity and quality of oocytes was found only for P. rutiloides. This study highlights that reproductive allocation of capital breeders in seasonal environments is strongly linked to environmental conditions before and during the reproductive period
    corecore