973 research outputs found
Lynx: A Programmatic SAT Solver for the RNA-folding Problem
15th International Conference, Trento, Italy, June 17-20, 2012. ProceedingsThis paper introduces Lynx, an incremental programmatic SAT solver that allows non-expert users to introduce domain-specific code into modern conflict-driven clause-learning (CDCL) SAT solvers, thus enabling users to guide the behavior of the solver.
The key idea of Lynx is a callback interface that enables non-expert users to specialize the SAT solver to a class of Boolean instances. The user writes specialized code for a class of Boolean formulas, which is periodically called by Lynx’s search routine in its inner loop through the callback interface. The user-provided code is allowed to examine partial solutions generated by the solver during its search, and to respond by adding CNF clauses back to the solver dynamically and incrementally. Thus, the user-provided code can specialize and influence the solver’s search in a highly targeted fashion. While the power of incremental SAT solvers has been amply demonstrated in the SAT literature and in the context of DPLL(T), it has not been previously made available as a programmatic API that is easy to use for non-expert users. Lynx’s callback interface is a simple yet very effective strategy that addresses this need.
We demonstrate the benefits of Lynx through a case-study from computational biology, namely, the RNA secondary structure prediction problem. The constraints that make up this problem fall into two categories: structural constraints, which describe properties of the biological structure of the solution, and energetic constraints, which encode quantitative requirements that the solution must satisfy. We show that by introducing structural constraints on-demand through user provided code we can achieve, in comparison with standard SAT approaches, upto 30x reduction in memory usage and upto 100x reduction in time
Kondo effect in crossed Luttinger liquids
We study the Kondo effect in two crossed Luttinger liquids, using Boundary
Conformal Field Theory. We predict two types of critical behaviors: either a
two-channel Kondo fixed point with a nonuniversal Wilson ratio, or a new theory
with an anomalous response identical to that found by Furusaki and Nagaosa (for
the Kondo effect in a single Luttinger liquid). Moreover, we discuss the
relevance of perturbations like channel anisotropy, and we make links with the
Kondo effect in a two-band Hubbard system modeled by a channel-dependent
Luttinger Hamiltonian. The suppression of backscattering off the impurity
produces a model similar to the four-channel Kondo theory.Comment: 7 pages, RevteX, to be published in Physical Review
A probabilistic model for gene content evolution with duplication, loss, and horizontal transfer
We introduce a Markov model for the evolution of a gene family along a
phylogeny. The model includes parameters for the rates of horizontal gene
transfer, gene duplication, and gene loss, in addition to branch lengths in the
phylogeny. The likelihood for the changes in the size of a gene family across
different organisms can be calculated in O(N+hM^2) time and O(N+M^2) space,
where N is the number of organisms, is the height of the phylogeny, and M
is the sum of family sizes. We apply the model to the evolution of gene content
in Preoteobacteria using the gene families in the COG (Clusters of Orthologous
Groups) database
Large-scale magnetic fields from inflation in dilaton electromagnetism
The generation of large-scale magnetic fields is studied in dilaton
electromagnetism in inflationary cosmology, taking into account the dilaton's
evolution throughout inflation and reheating until it is stabilized with
possible entropy production. It is shown that large-scale magnetic fields with
observationally interesting strength at the present time could be generated if
the conformal invariance of the Maxwell theory is broken through the coupling
between the dilaton and electromagnetic fields in such a way that the resultant
quantum fluctuations in the magnetic field has a nearly scale-invariant
spectrum. If this condition is met, the amplitude of the generated magnetic
field could be sufficiently large even in the case huge amount of entropy is
produced with the dilution factor as the dilaton decays.Comment: 28 pages, 5 figures, the version accepted for publication in Phys.
Rev. D; some references are adde
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays
The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where
Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL
detector at LEP. Lambda_b are selected by the presence of energetic Lambda
particles in bottom events tagged by the presence of displaced secondary
vertices. A fit to the momenta of the Lambda particles separates signal from B
meson and fragmentation backgrounds. The measured product branching ratio is
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))%
Combined with a previous OPAL measurement, one obtains
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European
Physical Journal
WW Production Cross Section and W Branching Fractions in e+e- Collisions at 189 GeV
From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots
= 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are
selected. Assuming Standard Model W boson decay branching fractions, the W-pair
production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +-
0.18(syst.) pb. When combined with previous OPAL measurements, the W boson
branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +-
0.28(syst.) % assuming lepton universality. These results are consistent with
Standard Model expectations.Comment: 22 pages, 5 figures, submitted to Phys. Lett.
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays
The lifetime and oscillation frequency of the B0 meson has been measured
using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP.
The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the
production flavour of the B0 mesons was determined using a combination of tags
from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d
= 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first
error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.
Search for Higgs Bosons in e+e- Collisions at 183 GeV
The data collected by the OPAL experiment at sqrts=183 GeV were used to
search for Higgs bosons which are predicted by the Standard Model and various
extensions, such as general models with two Higgs field doublets and the
Minimal Supersymmetric Standard Model (MSSM). The data correspond to an
integrated luminosity of approximately 54pb-1. None of the searches for neutral
and charged Higgs bosons have revealed an excess of events beyond the expected
background. This negative outcome, in combination with similar results from
searches at lower energies, leads to new limits for the Higgs boson masses and
other model parameters. In particular, the 95% confidence level lower limit for
the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons
can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA >
72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and
soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for
minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM
parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European
Physical Journal
- …
