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Abstract. This paper introduces Lynx, an incremental programmatic SAT solver that allows
non-expert users to easily introduce domain-specific code into modern Conflict-driven Clause-
learning (CDCL) SAT solvers, thus enabling users to control the behavior of the solver in ways
not possible otherwise. The key idea of Lynx is an easy-to-use callback interface that enables
non-expert users to specialize the SAT solver to a class of Boolean instances by allowing user-
provided code to examine partial solutions generated by the solver during its search, and to
dynamically and incrementally add CNF clauses back to the solver in response. While the power
of incremental SAT solvers has been amply demonstrated in the SAT literature and in the context
of DPLL(T), it has not been previously made available as a programmatic API that is easy to
use for non-expert users. Lynx’s callback interface is a simple yet very effective strategy that
addresses this need.

We demonstrate the benefits of Lynx through a case-study from computational biology, namely,
RNA secondary structure prediction. The constraints that make up this problem fall into two
categories: structural constraints, which describe properties of the biological structure of the so-
lution, and energetic constraints, which encode quantitative requirements that the solution must
satisfy. We show that by introducing structural constraints on-demand through user provided
code in Lynx, we can achieve, in comparison with standard SAT approaches, upto 30x reduction
in the amount of memory required to obtain a solution and upto 100x reduction in solution time.

The callback interface can also be used as a template to expose other internals of a SAT solver
such as branching heuristics or restart strategies, giving lay non-expert users more control over
the solver. This interface has the potential to address an important problem with the search
heuristics in modern CDCL SAT solvers, namely, their performance is unpredictable and non-
uniform even for structurally similar Boolean formulas. The callback interface allows the user
to compactly specify additional information about an input instance that can nudge the solver’s
heuristics in the right direction, i.e., makes the solver more efficient and predictable.

1 Introduction

CDCL (Conflict-Driven Clause Learning) Boolean SAT solvers have had a huge impact on a variety
of domains ranging from program analysis to AI [3]. This success can be attributed to dramatic
improvement in their efficiency in recent years thanks largely to techniques such as clause learning,
effective branching heuristics and restart strategies [3]. Often a straightforward translation from many
program analysis and AI problems to Boolean formulas is sufficient to leverage the power of modern
SAT solvers.

Unfortunately, there are many other important domains where simple standard translations of
problems from these domains (e.g., biology) to Boolean formulas do not lead to effective and robust
SAT-based solutions. A reason for this state-of-affairs is that Boolean formulas obtained from stan-
dard translations are often either too large or too difficult-to-solve for even the best of solvers. Even
though standard translations may not be efficient, SAT solver users are nonetheless aware of non-
standard translation strategies and/or heuristics that can enable a cost-effective SAT-based solution
to such problems. These non-standard translations tend to be unique to the problem domain. Further-
more, it is infeasible to expect SAT solver developers to know all such effective translations/heuristics
and build them into their SAT solvers.
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Consequently, it is important to enable users such that they can adapt solver heuristics and spe-
cialize translations to their respective problem domains in a cost-effective and robust manner. Ideally,
the user should be able to adapt the solver with minimal effort and without breaking subtle solver-
code invariants. The resultant specialized solver should be adaptive, efficient for the problem-at-hand,
easy to build and maintain. Equally importantly, users should not be burdened with knowing too much
about the internals of SAT solvers and related technologies.

1.1 Our Contributions

– To address the above-described problem, we provide a simple yet effective mechanism through
a callback interface (aka API) in our solver Lynx which allows user-specified code to exam-
ine partial solutions generated by the SAT solver, and add CNF clauses back to the solver in
response. The user code is called inside the inner loop of the SAT solver (we used CryptoMin-
iSat [27]). Thus, users can implement non-standard translations or heuristics tightly integrated
into the solver and build highly adaptable solvers specialized for their specific problem domains.
We call such solvers programmatic, i.e., the user can programmatically influence solver behavior
and adapt it to their specific problem domain in ways that is difficult to acheive otherwise. Pro-
grammatic solvers address the ”solvers-are-unpredictable-blackboxes” problem by giving users
more control over their search heuristics.
Lynx’s interface is simple enough that non-expert users can easily modify and maintain their
code. Furthermore, unlike related approaches discussed below, our approach places very few
restrictions on user-code and separates user code from SAT solver cleanly. Consequently, users
need not worry about breaking any subtle invariants of the base SAT solver.

– Using Lynx we developed the first SAT-based tool for solving the RNA-folding prediction prob-
lem. We present a detailed experimental evaluation of our technique in comparison with standard
approaches. We use the above-mentioned callback interface in Lynx to incrementally translate
the RNA-folding structure prediction problem into Boolean formulas. The interface allows us
do the translation in an online incremental fashion inside the inner loop of the SAT solver, thus
allowing a tighter, highly targeted and more efficient integration of the SAT solver and the trans-
lator.

1.2 Existing Approaches to Incremental and Adaptive Solving

Incremental solvers have been proposed as a solution to the above-mentioned issue of simple but
inefficient standard translations from many problems to Boolean formulas. Instead of translating the
entire problem-instance into a potentially very large Boolean formula in one step, an incremental
solver uses abstraction-refinement approaches to translate the instance into a Boolean formula incre-
mentally and call the solver on these abstractions. The solver terminates if it gets the correct result
to the input query. Otherwise it refines the abstractions as necessary until the solver gets the correct
result to the input query (The Handbook of Satisfiability [3] is great reference for many abstraction-
refinement strategies). Typically these translations are done by a layer outside the SAT solver.

Such incremental SAT solvers with an outside abstraction-refinement loop are relatively easy to
build. However, the problem with such an approach is that it may not be the most efficient for the
problem-at-hand. Indeed, Ohrimenko et al. [22] have proposed incremental translation of problems
to SAT where the integration of the solver and the incremental translation is much tighter and more
efficient than an outer layer translator. However, their implementation is non-adaptive, and is specific
to a class of difference logic formulas. In other words, they haven’t provided an API that users can
use to easily adapt or extend the solver for a class of Boolean formulas (e.g., users could use such an



API to make the solver incremental, where the integration of the user’s incremental translator with
the solver is very tight in a sense that we make specific below).

An example of an API that allows users to adapt or extend solvers is the powerful idea of
DPLL(T) [13] aimed at solving Boolean combination of formulas in rich theories such as integer
linear arithmetic, uninterpreted functions and datatypes (aka SMT solvers [3]). In this approach,
there is a tight integration of a CDCL SAT solver with a so-called theory solver (aka a T-solver) that
can handle conjunction of constraints represented in a rich logic. The CDCL SAT solver does the
search on the Boolean structure of the formula without knowing the semantics of the literals, while
the T-solver reasons about the literals themselves adding any new derived literals back to the Boolean
CDCL solver appropriately. The tight integration enables the T-solver to influence the CDCL solver’s
behavior in ways not possible otherwise, and the resultant combination is typically a very powerful
solver than can handle arbitrary Boolean combination of theory formulas efficiently.

A lay non-expert user could implement a “T-solver” using the DPLL(T) framework that reasons
about a specific domain (say, theory of RNA folding) and adds constraints incrementally to the SAT
solver. The resultant combination can be tight and incremental ala Ohrimenko and Stuckey et al. [22].
However, while DPLL(T) is a very powerful idea and helps create domain-specific solvers, it does
impose strict requirements on the user-specified code (T-solver) in order to ensure that the resultant
combination is sound and complete (This is a well-understood and accepted fact in the SAT/SMT
solver community). Such requirements make perfect sense for constructing powerful SMT solvers,
the problem for which the DPLL(T) approach was invented by Oliveras, Nieuwenhuis, and indepen-
dently by Tinelli et al [13]. However, for the lay non-expert users such requirements may be difficult
to satisfy, and often not essential. A typical biologist is more concerned about solver efficiency and
correctness for a class of problem-instances, and probably cares less about completeness of a solver
with respect to all instances. Furthermore, such users may be willing to sacrifice completeness as long
as the resultant combination of user-code and solver is efficient, and the user can easily experiment
with and modify their code to get the correct solution.

1.3 RNA-folding with Lynx

To explore the benefits of using the callback interface provided by Lynx, we applied the technique to
the problem of RNA folding. This is an application of significant practical relevance: understanding
RNA folding is crucial to understanding a number of biological processes, including the replication
of single-strand RNA viruses such as the poliovirus which causes polio in humans. Moreover, RNA
prediction actually shares important similarities with other structure prediction problems of biologi-
cal interest. This problem is a particularly suitable benchmark for our approach. First, a SAT based
solution to this problem would be particularly desirable because it would give researchers the ability
to easily experiment with different formulations for the basic problem. Moreover, previous work in
the literature has succeeded in formalizing the problem in a form that lends itself very naturally to
solution with a Boolean SAT solver. SAT solver-based solutions, however, have been elusive because
the standard encoding leads to Boolean SAT instances that are too big for modern solvers to han-
dle. Using Lynx’s callback interface allowed us to encode instances of the RNA folding problem
in a memory efficient manner, thus produce the first successful SAT-based solution to this problem.
The resultant incremental (or online abstraction-refinement) solver led to a 30-fold reduction in the
amount of memory required to solve some of these problems compared to standard SAT approach,
and demonstrated dramatic time improvements over standard abstraction refinement techniques.

Paper Layout: In Section 2 we provide a detailed overview of the callback interface and discuss
its implementation and rationale for the design choices we make. In Section 3 we provide a self-
contained description of the RNA-folding structure prediction problem. In Section 4 we provide



detailed description of our experimental setup and results. We review the related work in Section 5,
and conclude in Section 6.

2 Incrementality in Lynx

This section describes the details of how the callback interface in Lynx allows us to make the solver
incremental, what we sometimes also refer to as online abstraction-refinement or OAR. In order to
facilitate the description, we introduce a simple running example which shares some of the features
of the more complex biology application.

The running example is a formula of the form P (x)∧C(x) over a vector x = 〈x0, x1, . . . , xN 〉 of
Boolean variables, where P (x) consists of some arbitrary set of constraints and C(x) is a cardinality
constraint that says that no more than 2 bits in x can be set to 1.

C(x) ≡ ∀i 6=j 6=k(¬xi ∨ ¬xj ∨ ¬xk)

The above definition of C(x) can be trivially encoded as a set of N3 CNF clauses—too many for
large values of N . For this specific case, more efficient encodings exist that use only O(N) clauses,
but they are more complicated and require the introduction of additional SAT variables. By contrast,
online abstraction refinement will allow us to use the simple encoding without having to pay the price
of introducing N3 clauses.

The first step in using OAR is to divide the problem into a core set of clauses which will be added
to the solver from the very beginning, and a different set of dynamic clauses that will be added to
the solver incrementally by a callback function. The callback function is a function provided by the
solver user M that produces a set of clauses given a partial assignment to the variables. A partial
assignment sets each variable in the problem to either 1, 0, or ⊥ (undefined), and is represented as a
vector t ∈ {0, 1,⊥}N .

In the case of the example, we define P (x) to be the core clauses, and C(x) to be the clauses
added dynamically by a callback function defined by the following:

M(t) ≡ {(¬xi ∨ ¬xj ∨ ¬xk) | i 6= j 6= k ∧ ti = tj = tk = 1}

This callback function receives a partial assignment t, and returns a set of clauses of the form (¬xi ∨
¬xj∨¬xk) where xi, xj and xk are variables set to 1 in the partial assignment (i.e., ti = tj = tk = 1).
The clauses produced by the callback function eliminate those incorrect solutions that would have
been eliminated by C(x), so running the solver with constraints P (x) and callback functionM is
the same as solving P (x) ∧ C(x).

Lynx incorporates the callback function into the solution process by invoking it periodically with
the current partial assignment. If the callback function returns any clauses, these are incorporated
into the problem, and the process continues until an assignment is found that: a) satisfies all the core
constraints, b) satisfies all the constraints ever produced by the callback function, and c) produces an
empty set of clauses when the callback function is applied to it. If the input problem is unsatisfiable,
the solver with the callback function is guaranteed to report unsatisfiable and terminate. In the case
of our running example, the guarantees provided by the solver allow us to establish that the solution
provided by Lynx is a correct solution to the initial set of constraints. In general, these guarantees
allow us to make formal claims about the relationship between the solutions produced by Lynx and
the space of solutions to the original problem.

2.1 Anatomy of a callback function

In Lynx a callback function is a fragment of code that checks a partial assignment to the variables and
produces clauses in response. The callback function can perform arbitrary computation, but is limited



in terms of the interactions that it can have with the solver. These limitations are intentional and they
are designed to prevent the callback function code from tampering directly with the highly sensitive
search heuristics of the solver, and free the user from worrying about breaking low-level subtle solver
invariants. The callback function interacts with the solver through the following functions:

– varIter() returns an iterator over all the important variables that have values so far, sorted in
the order in which they were assigned. Users define what variables in the program are important
to the callback function, allowing the callback function to ignore assignments to other variables
(aka the assignment stack).

– recentVarIter() returns an iterator over all the variables that have been assigned since the last
time the callback function executed.

– addClause(Clause c) allows the callback function to add a clause to the current problem.

In writing callback functions, users must balance the elimination power of the callback function
with execution efficiency. For our running example, a simple and efficient callback function is as
follows:

Iterator fst = recentVarIter ();
while( fst .hasNext ())
{ Lit l1 = fst . next ();

if (! l1 . sign ())
{ Iterator sec = varIter (); Lit temp = 0;

while(sec .hasNext ())
{ Lit l2 = sec .hasNext ();

if (! l2 . sign ())
{ if (temp!=0) addClause({ ¬ l1, ¬l2, ¬temp});

temp = l2 ;}
} } }

This callback function produces only a subset of the clauses produced byM presented earlier,
so it eliminates fewer bad assignments; the tradeoff is that it is efficient to compute. Further, its outer
loop uses the iterator returned by recentVarIter () . This prevents the callback function from doing a
lot of repeated work from one invocation to the next, dramatically reducing its overhead.

2.2 Implementation

We implemented Lynx on top of CryptoMiniSat [27] with a handful of simple modifications. Cryp-
toMiniSat is a derivative of MiniSat [11], with various advanced features such as clause subsumption
and strengthening. Like all DPLL-style SAT [9] solvers, CryptoMiniSat uses the main loop:

while not done{
1: Conflict c = propagate ();

if (c != null )
2: /∗ handle conflict and backtrack ∗/

else
3: /∗ decide on a new variable to enqueue, or quit when done∗/

}

We modified this loop to call the callback function before deciding on a new variable to enqueue in
line 3. This way, the callback function is called periodically and the system cannot return a satisfying
assignment without checking the callback function first. If the callback function returns any clauses,
these are preprocessed and added to the clause database, and the solver backtracks using the same



strategy it uses for conflict clauses. The implementation involved a number of low-level detailes, but
required minimal modifications to CryptoMiniSat, and could be easily implemented in other SAT
solvers such as MiniSat [11].

3 Biological Problem Overview

RNA is a versatile polymer essential all of life. A chain of covalently bound nucleotides, RNA clas-
sically acts as a cellular messenger which duplicates DNA sequence information in the nucleus/nu-
cleoid and transports that code to ribosomes for the construction of proteins. However, this chain
can also fold in on itself into a 3-dimensional globular molecule which catalyzes biological reac-
tions by itself. In fact, modern studies have suggested that such non-coding RNA (ncRNA) may
play even a bigger cellular role than messenger RNA, with significant effects on metabolism, signal
transduction, gene regulation, and chromosome inactivation. Such RNA function is determined by
its nucleotide composition and 3-dimensional structure, however, relatively little ncRNA structural
data is known [29], severely limited our understanding of these mechanisms. Therefore, algorithmic
prediction of RNA structure from its nucleotide sequence has been a longstanding computational
goal, and has become an increasingly important biological tool as ncRNA’s are implicated in more
and more processes.

3.1 Structure prediction via SAT

In this paper, the computational problem we address on is how to correctly attribute a unique struc-
tural state to each nucleic acid (or groups of nucleic acids) within an RNA polymer sequence. This
problem has a long history of solutions based on many different algorithmic models — the most
successful of which using a recursive, grammatical approach introduced by Zuker [30]. In this bio-
physical model, each nucleotide is allowed to form a pairwise bond with another, and each pair is
assigned an energetic cost based on spatially adjacent nucleotide types [20]. The most likely structure
is predicted by optimizing pairing configuration according to a fixed thermodynamic scoring system
(energy minimization). Efficient computation is made possible through of the imposition of specific,
often biologically-inspired model restrictions — for example, limiting base-pairs to be sequentially
nested (i.e. no “pseudoknots”) and scoring only a subset of all potential energetic interactions (i.e.
only Watson-Crick or wobble base-pairs). Unfortunately, this entangles the optimization techniques
used with a particular set of biological assumptions. While these methods have shown good predic-
tive accuracy, changes to the algorithm can be difficult to implement as new scientific data comes
to light. For example, it has been shown that a more complex description of the RNA interaction
energetics can lead to greatly improved results [23].

We propose a declarative approach for the structure prediction problem, providing a decoupled
platform for reasoning about biological concepts in clear, succinct rules, backed by the powerful
generic optimization of CDCL SAT solvers. This allows biological models to be tested and flexi-
bly refined using a constraint-based philosophy, independent of performance improvements to the
underlying solver.

To study this approach, we have implemented an RNA structure prediction algorithm using Lynx.
Rather than compare the benefits and disadvantages of different biological models, we base our im-
plementation on an RNA scoring model recently proposed by Kato, et al. for integer programming
optimization [24]. Indeed, other models outperform this scoring system’s accuracy, but we believe
our results are easily generalizable to greater classes of RNA structures [4] and more complex (non-
RNA) structure prediction problems in general.



To implement energy minimization as a SAT-based decision procedure, we pose the question
of whether an assignment exists that is lower than a certain energy threshold and perform iterative
binary search. Despite this search routine, this approach can often be more efficient than the dynamic
programming methods used by grammatical models as the problem can be finely partitioned into
smaller jobs that are run in parallel. Further, when a sub-optimal solution is sufficient, this method
quickly short-circuits, along with a guarantee of how near the solution is to optimality. For clarity,
timing results in this paper reflect a single threaded search, but we have otherwise implemented
parallelization techniques that work across multiple cores and machines.

3.2 RNA secondary structure prediction with pseudoknots

We note that the RNA prediction algorithm described here differentiates itself from classical pre-
diction methods in its goal of predicting pseudoknots. Earlier grammar-based predictors allowed
only base-pairs to occur in a recursively nested fashion (i.e. for every base-pair i-j there exists no
base-pair k-l such that i < k < j < l) to enable highly efficient energy minimization via dy-
namic programming. However, pseudo-knotted structures which break this restriction are known to
be essential to a number of functions, such as the Diels-Alder ribozyme and mouse mammary tumor
virus [28]. However, predicting pseudoknotted structures is computationally a much harder problem
with fewer solutions [21, 26, 24, 25]. In fact, the prediction of truly arbitrary pseudoknots has been
shown NP-complete [18], and classes of pseudoknotted structures are often more easily defined by
the algorithms which recognize them rather than their biological significance [8]. This motivates the
use of a declarative approach, which allows on to easily explore different trade-offs between repre-
sentation and optimization, especially if the underlying scoring system is changed from the standard
Watson-Crick/wobble base-pair models to more complex interactions [23].

However, in the remainder of this work we again restrict ourselves to the model proposed by
Kato, et al. [24].

3.3 Encoding RNA structure prediction in SAT

Our SAT encoding is formulated by two sets of constraints, structural and energetic, that control the
assignment of a vector of free variables which represent the final structural solution. The assignment
of each free variable indicates whether two nucleotides are base-paired in the final RNA structure,
fixed by structural constraints and an associated energetic score. Figure 1 depicts this formulation.

Solution variables: The set of all properly-nested base-pairs within the final output RNA struc-
ture is represented by the variables Xi,j : where i and j indicate the sequence position of two nu-
cleotides, a value Xi,j = T indicates a hydrogen bond base-pair exists between nucleotides at i
and j, and Xi,j = F indicates that no base-pairing occurs between positions i and j. The set of
pseudoknotted base pairs that cannot be properly nested are similarly represented by the independent
variables Yi,j . In this way pseudoknots are represented solely by the alignment of properly-nested
Xi,j pairs and properly-nested Yi,j pairs. Since RNA structure permits any nucleotide position i to
pair with any other position j, a valid biological structure requires a complete assignment of all Xi,js
and Yi,js for every i, j (0 ≤ i, j < length(sequence)). Therefore, the number of solution variables,
the number of resultant constraints, and thus the difficulty of the SAT problem depends directly on
the sequence length of the input RNA.

Structural constraints: The structural representation places requirements on the assignment of
the solution bits Xi,j and Yi,j to ensure a biologically consistent structure. Therefore, we declare the
following constraints, which must be satisfied in any valid solution:



– Every position i can at most pair with one other position j, independent of whether that pairing
is properly-nested or a pseudoknot (Figure 1(a-d)). Four straightforward constraints ensure this:

∀i, j, k, i < j < k

(Xi,j ∧Xj,k) = F ∧ (Yi,j ∧ Yj,k) = F ∧
(Xi,j ∧ Yj,k) = F ∧ (Yi,j ∧Xj,k) = F

– All base-pairs i, j are properly nested or a pseudoknot, but not both (Figure 1(e)):

∀i, j (Xi,j ∧ Yi,j) = F

– We define all Xi,j and Yi,j base-pairs to be independently knot-free (Figure 1(f-g)):

∀i, j, k, l, s.t. i < k < j < l

(Xi,j ∧Xk,l) = F ∧ (Yi,j ∧ Yk,l) = F

– We only permit bifurcations within the “normal” base-pairs in Xi,j since pseudoknots are rare
and deserve distinct energetic treatment. Therefore (Figure 1(h):

∀i, j, k, l, i < k < j < l (Yi,j ∧ Yk,l) = F

– Finally, the class of structures with “double-crossing” pseudoknots are rare and present unusual
energetics which are not handled by the energy model we use, thus we constrain pseudoknots to
only cross at most once (Figure 1(i-j)):

∀i, j, k, l,m, n, i < m < j < k < n < l

(Xi,j ∧ Ym,n) =⇒ (Xk,l = F) ∧
(Xk,l ∧ Ym,n) =⇒ (Xi,j = F)

Energetic constraints: The total energy of an RNA structure is defined as the sum of experimentally-
derived energy parameters [30, 24] for every constituent base-pair stack, where a stack indicates two
adjacent base pairs, e.g. Xi,j and Xi+1,j−1. Energy parameters are given in terms of base-pair stacks
because nucleotide π-orbital overlap serves as a dominant stabilizing factor in RNA structure. Thus,
an energy value is assigned to every base-pair stack Xi,jXi+1,j−1 according to the four nucleotide
types at sequence positions i, j, i + 1, and j − 1 (Parameters found in [24]). By including a logical
adder of all possible energetic assignments, we can then define a valid solution as an assignment
of Xi,j and Yi,j (subject to structural constraints), where the output of the adder overcomes some
minimum threshold energy Ethreshold (the energy bound). As a logical declaration, we write:

∀i, j, i < j (Xi,j ∧Xi+1,j−1) = T⇒ (EXi,j
= EnergyConstant(i,j,i+1,j−1)) ∧

(Yi,j ∧ Yi+1,j−1) = T⇒ (EYi,j
= EnergyConstant(i,j,i+1,j−1)) ∧

(Xi,j ∧Xi+1,j−1) = F⇒ (EXi,j
= 0) ∧

(Yi,j ∧ Yi+1,j−1) = F⇒ (EYi,j
= 0),

where EnergyConstant(i, j, i+ 1, j − 1) indicates the energy score of the four nucleotides found
at positions i, j, i+ 1, and j + 1 base-pairing and stacking, and

∑
∀i,j

(EXi,j
+ EYi,j

) ≥ Ethreshold.



Finally, to enforce that all assigned base-pairs are accounted within the adder by stacking energy
parameters, we require:

∀i, j s.t. i < j

(Xi−1,j+1 ∧ Xi,j ∧Xi+1,j−1) = F ∧
(Yi−1,j+1 ∧ Yi,j ∧ Yi+1,j−1) = F
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Fig. 1. RNA Constraints

4 Experimental Results

In this section we describe the results of our experimental evaluation of Lynx and competing ap-
proaches over input tests obtained from a set of RNA sequences. As described in detail in 3, we solve
the two dimensional RNA optimum structure prediction problem (where the structures may have
pseudoknots). We ran all experiments on a 3GHz Intel Xeon X5460 with 64GB of RAM and a 6MB
L2 cache with 1 hour timeout per SAT instance.

4.1 Description of Input Tests

We acquired a set of benchmark RNA sequences and structures from the PseudoBase website [1].
These RNA sequences are widely used by computational biologists for a variety of structure predic-
tion tasks. The biological accuracy of our lowest-energy structure predictions were verified to agree
with Kato, et al. [24], whose scoring model we duplicate. Recall that the optimization problem is
treated as a series of decision problems performing a binary search of the energy space. For each
RNA sequence, a corresponding SAT instance is therefore constructed containing the energy and
structural constraints along with an energetic bound that captures the minimum and maximum al-
lowed energy for that step in the binary search. Given the precision of our energy model a search
depth of 10 sufficed to identify the minimum energy structure of any structure tested.



4.2 Experimental Methodology

We solve the structure prediction problem using the following three methods:

– Baseline Approach using CryptoMiniSat (BA): A standard encoding of our problem in SAT.
We generate the complete SAT encoding (with XOR clauses as appropriate) of the RNA sec-
ondary structure prediction problem, then use CryptoMiniSat to solve this problem. We also used
MiniSat2 [11], and found that for this problem its performance is similar to CryptoMiniSat [27].

– Offline Abstraction Refinement (OFFA): An encoding of our problem using established re-
finement techniques. Starting with only the energy constraints from the SAT encoding of the
RNA structure prediction problem to form the abstracted constraint, we use offline abstraction
refinement to obtain a solution to the complete structure prediction problem. Each refinement
step uses CryptoMiniSat to solve the current SAT problem, computes the set of constraints from
the complete structure prediction problem that are inconsistent with this solution, and generates
a new problem by incrementally adding these constraints to the current problem in SAT. The
refinement process continues until it produces a solution to the complete input problem.

– Online Abstraction Refinement (ONA): The methodology enabled by our tool Lynx. Starting
with only the energy constraints from the SAT encoding of the RNA structure prediction prob-
lem to form the abstracted constraint, we use online abstraction refinement to obtain a solution
to the complete structure prediction problem. After each CryptoMiniSat propagation step, the
constraint manager examines the current partial solution to find the set of constraints from the
full structure prediction problem that conflict with the current solution. It then incrementally adds
these constraints to the current problem before CryptoMiniSat takes the next partial solution step.
The difference between the Offline (OFFA) and Online (ONA) approaches is the granularity of
the refinement steps. Each refinement step in the OFFA version takes place only after Crypto-
MiniSat produces a complete solution to the current problem. Each refinement step in the ONA
version, in contrast, takes place at the much finer granularity, every time CryptoMiniSat extends
the current partial solution.

4.3 Results

Table 1 presents the total execution times required for the different methods to solve the RNA struc-
ture prediction problems. We run each method with a timeout of 3600 seconds for each SAT solution
problem (i.e., each binary search step). Each row in the table corresponds to a single RNA. The first
column is the number of base pairs in the RNA sequence. The next column presents the time (in
seconds) required for the BA method to solve the problem. Recall that each problem requires the
solution of 10 SAT instances; the reported total time is the sum of the 10 individual SAT solution
times. The next column presents data from the OFFA method and is of the form t = s+ c(r). Here t
is the total time required to solve the structure prediction problem (the sum of the solution times for
the 10 SAT problems), s is the amount of time spent in the SAT solver, c is the amount of time spent
in the constraint manager, and r is the total number of refinement steps (summed over all 10 SAT
problems). The last column presents data from the ONA method and is also of the form t = s+ c(r).

Up to problem PKB124, the solution times for all of the methods are roughly comparable (all
less than ten seconds and within a factor of two for the same RNA sequence). For larger problems
the OFFA approach starts to exhibit substantially larger solution times than either BA or ONA ap-
proaches; for the largest problems in our benchmark set OFFA times out. For two of the largest three
problem sizes BA is roughly a factor of two slower than ONA; BA times out for PKB248.



RNA sequence Baseline Offline Online
length (sec) Tot(sec)=SAT+Ref (# steps) Tot(sec)=SAT+Ref (# steps)

PKB115 24 1.4 1.7 = 1.3+0.4 (205) 0.8 = 0.6+0.2 (2,538)
PKB102 24 1.3 1.0 = 0.7+0.3 (129) 0.6 = 0.5+0.1 (1,766)
PKB119 24 2.1 3.6 = 3.0+0.6 (266) 1.6 = 1.3+0.3 (4,108)
PKB103 25 3.1 6.6 = 5.4+1.2 (417) 3.5 = 3.1+0.4 (6,191)
PKB123 26 5.6 24.7 = 22.7+2.0 (597) 7.4 = 6.8+0.6 (8,980)
PKB154 26 2.5 3.8 = 3.2+0.6 (236) 1.9 = 1.7+0.2 (4,070)
PKB152 26 3.2 6.2 = 5.2+1.0 (255) 2.3 = 2.0+0.3 (5,528)
PKB126 27 4.0 6.6 = 5.5+1.1 (384) 2.8 = 2.5+0.3 (5,874)
PKB124 29 4.7 5.1 = 4.4+0.7 (262) 2.3 = 2.1+0.2 (4,635)
PKB100 31 11.0 52.3 = 49.4+2.9 (315) 6.8 = 6.0+0.8 (11,890)
PKB105 32 17.0 58.3 = 54.0+4.3 (1004) 18.1 = 17.0+1.1 (16,817)
PKB118 33 13.7 32.8 = 29.6+3.2 (591) 8.2 = 7.4+0.8 (12,878)
PKB120 36 36.1 571.1 = 560.6+10.5 (652) 24.1 = 21.9+2.2 (26,370)
PKB065 46 185.1 11,341.9 = 11,298.7+43.2 (1,344) 112.7 = 108.1+4.6 (50,508)
PKB205 48 388.6 T.O. 391.6 = 381.9+9.7 (72,922)
PKB147 51 1,917.3 T.O. 1,087.9 = 1,067.2+20.7 (131,321)
PKB248 66 T.O. T.O. T.O.
PKB072 67 5,352.6 T.O. 2,414.1 = 2,367.6+46.5 (286,881)

Table 1. Comparison of running times between Baseline (BA), Offline (OFFA), and Online (ONA) methods.
Total cumulative time (across all solver instances during search) is reported, broken down by the amount of time
spent in the SAT solver versus the amount of time spent in refinement. The number of refinement steps involved
is also given. T.O. indicates that a timeout occured after 1hr of an individual SAT solver instance.

We note that there is a substantial difference between the number of refinement steps that the
ONA and OFFA methods perform — OFFA typically performs hundreds of (relatively coarse grain)
refinement steps, while ONA performs thousands of (fine grain) refinement steps. These data indicate
that, as expected, the SAT solver can respond much more quickly to fine grain than to coarse grain
refinement steps, but that the ONA method requires more fine grain steps to reach a solution.

Table 2 presents the maximum amount of memory required to solve the structure prediction prob-
lem (this is the maximum over all runs of the SAT solver of the amount of memory that the SAT solver
consumes) and the total number of clauses for each RNA. For the OFFA and ONA methods, the total
number of clauses is the sum over all binary search steps of the number of clauses in the problem
at the final refinement step. Each entry of the table is in the form m/c, where m is the maximum
memory and c is the number of clauses. Both the OFFA and ONA methods generate problems with
substantially smaller numbers of clauses than the BA method (BA typically generates hundred to
thousand times as many clauses OFFA and ONA typically generate). For larger RNA sequences,
these larger clause sizes translate into substantially larger memory requirements for the BA method
— OFFA and ONA never go above several hundred Mbytes, while BA starts requiring more than
1Gbyte of memory for the larger sequences.

4.4 Discussion

These data highlight how the ONA method is able to combine the benefit of small memory require-
ments, which it shares with OFFA, and feasible execution times, which it shares with BA (further
note that ONA often exhibits roughly a factor of two performance advantage over BA). We attribute



RNA sequence Baseline Offline Online
length Mem(MB) / Clauses Mem(MB) / Clauses Mem(MB) / Clauses

PKB115 24 5.0 / 3,223k 5.0 / 94k 72.1 / 82k
PKB102 24 5.0 / 3,219k 5.0 / 86k 5.0 / 75k
PKB119 24 5.0 / 3,240k 5.0 / 130k 5.0 / 104k
PKB103 25 5.0 / 4,142k 16.5 /174k 5.0 / 136k
PKB123 26 43.4 / 5,244k 19.7 / 226k 74.7 / 168k
PKB154 26 5.0 / 5,204k 5.0 / 128k 5.0 / 106k
PKB152 26 5.0 / 5,220k 16.6 / 174k 5.0 / 128k
PKB126 27 72.1 / 6,544k 74.5 / 171k 5.0 / 129k
PKB124 29 5.0 / 10,076k 5.0 / 142k 5.0 / 108k
PKB100 31 90.5 / 16,937k 23.9 / 376k 90.0 / 231k
PKB105 32 157.4 / 20,584k 75.9 / 448k 95.7 / 260k
PKB118 33 131.9 / 24,870k 23.2 / 355k 22.8 / 227k
PKB120 36 276.0 / 42,698k 76.7 / 729k 75.3 / 369k
PKB065 46 1,011.8 / 196,236k 150.6 / 341k 122.9 / 595k
PKB205 48 1,221.3 / 255,861k T.O. 145.0 / 808k
PKB147 51 1,988.9 / 373,294k T.O. 188.7 / 1,322k
PKB248 66 T.O. T.O. T.O.
PKB072 67 9,046.5 / 2,031,362k T.O. 313.1 / 2,652k

Table 2. Comparison of memory usage between Baseline (BA), Offline (OFFA), and Online (ONA) methods.
Given is the maximum memory (in MB) required throughout all SAT solver instances, along with the sum of the
total number of clauses (in thousands) both input and generated during refinement. T.O. indicates that a timeout
occured after 1hr of an individual SAT solver instance.

these characteristics to, first, the ability of the ONA method to effectively find relatively small prob-
lems whose solution also happens to be a solution of the complete structure prediction problem, and
second, the ability of the ONA method to efficiently guide the SAT solver to the solution through
fine-grain corrections to partial solution missteps. A comparison with the OFFA method illustrates
how quickly correcting any missteps on the part of the SAT solver (by operating the refinement steps
after every intermediate SAT solver decision rather than after every complete solution) can deliver
very efficient solution times even in situations where the more coarse OFFA approach fails to solve
the problem in an acceptable amount of time.

5 Related Work

There has been a lot of recent work on incremental SAT solvers [22], DPLL(T) [13], abstraction-
refinement based techniques in the context of model-checking and decision procedures for SMT
theories [2]. We summarize the related work, and contrast other tools with Lynx.

Incrementality, Extensibility and SAT Solvers: The idea of a programmatic interface enables
extensibility and specialization of SAT solvers in ways not possible otherwise. Many researchers
in the past have expressed, at a high level, a need for such extensible solvers [15]. The work that is
closest to ours is by Stuckey et al. [22] and the related idea of DPLL(T) [13]. Our work is different
from Stuckey et al. in the mechanism employed to implement incrementality, namely, a callback
interface. Our approach is more flexible in the sense that it can be used to expose other internals
of SAT solvers (e.g., branching heuristics or restart triggers) to lay non-expert users in ways that



makes the solver easy-to-experiment with and easily adaptable to different problem domains. While
DPLL(T) is a very powerful idea, it is also heavy-weight in the requirements placed on user-code (to
ensure completeness and soundness) and is probably best used by experts. Another difference is that
in DPLL(T) the T-part is typically a first-order theory, whereas the user code in Lynx refers only to
Boolean variables.

Abstraction-refinement in decision procedures: The idea of counter-example guided abstraction
refinement was originally developed in the context of model-checking [7]. Since then the basic idea
has been adapted in different ways to solve the satisfiability problems of SMT theories [2]. Kroening,
Ouaknine, Seshia, and Strichman [17] were the first to adapt CEGAR to deciding quantifier-free
Presburger arithmetic. The same group then extended the idea to deciding the theory bit-vectors [6].
More recently, Brummayer and Biere give a new technique that allows early termination of an under-
approximation refinement loop even when the original formula is unsatisfiable [5]. Ganesh and Dill
proposed the use of abstraction-refinement for deciding the theory of arrays [12]. Gershman and
Strichman extends the idea of abstraction-refinement to a heuristic for clause ordering in Boolean
SAT solving [14].

RNA secondary structure prediction: Zuker introduced the first optimal algorithms for RNA sec-
ondary structure prediction based on a dynamic programming solution to energy minimization [30],
although many improved predictors have followed [19]. Non-thermodynamic approaches have also
met success through the use of phylogenetic relationships [16], or via machine learning [10]. The
first efficient thermodynamic-based algorithm for predicting RNA pseudoknotted secondary struc-
ture was introduced by Rivas and Eddy (PKNOTS [26]). Subsequent algorithms have recognized
alternate classes of pseudknots or improved upon the efficiency of solutions [21, 4], including the IP
formulation focused on in this paper [24], and heuristics such as HotKnots [25].

6 Conclusions
We present Lynx, a programmatic incremental SAT solver that allows non-expert users to easily
introduce domain-specific or instance-specific code into modern CDCL SAT solvers, thus enabling
users to control the behavior of the solver in ways not possible otherwise. While there has been
previous work on incremental SAT [22] and related ideas such as DPLL(T), Lynx’s interface is simple
to use and the requirements placed on user code are very minimal. The approach is a template on how
to expose other internals of the SAT solver to non-expert users in a easy-to-use and intuitive way. We
demonstrate the benefits of Lynx through a first-of-its-kind solver case-study from computational
biology, namely, RNA secondary structure prediction.
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