117 research outputs found

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Neck-motor interactions trigger rotation of the kinesin stalk

    Get PDF
    Rotation of the coiled-coil stalk of the kinesin-14 motors is thought to drive displacements or steps by the motor along microtubules, but the structural changes that trigger stalk rotation and the nucleotide state in which it occurs are not certain. Here we report a kinesin-14 neck mutant that releases ADP more slowly than wild type and shows weaker microtubule affinity, consistent with defective stalk rotation. Unexpectedly, crystal structures show the stalk fully rotated – neck-motor interactions destabilize the stalk, causing it to rotate and ADP to be released, and alter motor affinity for microtubules. A new structural pathway accounts for the coupling of stalk rotation – the force-producing stroke – to changes in motor affinity for nucleotide and microtubules. Sequential disruption of salt bridges that stabilize the unrotated stalk could cause the stalk to initiate and complete rotation in different nucleotide states

    Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi

    Get PDF
    The response of Alliumcepa, A. roylei, A. fistulosum, and the hybrid A. fistulosum × A. roylei to the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied. The genetic basis for response to AMF was analyzed in a tri-hybrid A. cepa × (A. roylei × A. fistulosum) population. Plant response to mycorrhizal symbiosis was expressed as relative mycorrhizal responsiveness (R′) and absolute responsiveness (R). In addition, the average performance (AP) of genotypes under mycorrhizal and non-mycorrhizal conditions was determined. Experiments were executed in 2 years, and comprised clonally propagated plants of each genotype grown in sterile soil, inoculated with G. intraradices or non-inoculated. Results were significantly correlated between both years. Biomass of non-mycorrhizal and mycorrhizal plants was significantly positively correlated. R′ was negatively correlated with biomass of non-mycorrhizal plants and hence unsuitable as a breeding criterion. R and AP were positively correlated with biomass of mycorrhizal and non-mycorrhizal plants. QTLs contributing to mycorrhizal response were located on a linkage map of the A. roylei × A. fistulosum parental genotype. Two QTLs from A. roylei were detected on chromosomes 2 and 3 for R, AP, and biomass of mycorrhizal plants. A QTL from A. fistulosum was detected on linkage group 9 for AP (but not R), biomass of mycorrhizal and non-mycorrhizal plants, and the number of stem-borne roots. Co-segregating QTLs for plant biomass, R and AP indicate that selection for plant biomass also selects for enhanced R and AP. Moreover, our findings suggest that modern onion breeding did not select against the response to AMF, as was suggested before for other cultivated species. Positive correlation between high number of roots, biomass and large response to AMF in close relatives of onion opens prospects to combine these traits for the development of more robust onion cultivars

    A seesaw model for intermolecular gating in the kinesin motor protein

    Get PDF
    Recent structural observations of kinesin-1, the founding member of the kinesin group of motor proteins, have led to substantial gains in our understanding of this molecular machine. Kinesin-1, similar to many kinesin family members, assembles to form homodimers that use alternating ATPase cycles of the catalytic motor domains, or “heads”, to proceed unidirectionally along its partner filament (the microtubule) via a hand-over-hand mechanism. Cryo-electron microscopy has now revealed 8-Å resolution, 3D reconstructions of kinesin-1•microtubule complexes for all three of this motor’s principal nucleotide-state intermediates (ADP-bound, no-nucleotide, and ATP analog), the first time filament co-complexes of any cytoskeletal motor have been visualized at this level of detail. These reconstructions comprehensively describe nucleotide-dependent changes in a monomeric head domain at the secondary structure level, and this information has been combined with atomic-resolution crystallography data to synthesize an atomic-level "seesaw" mechanism describing how microtubules activate kinesin’s ATP-sensing machinery. The new structural information revises or replaces key details of earlier models of kinesin’s ATPase cycle that were based principally on crystal structures of free kinesin, and demonstrates that high-resolution characterization of the kinesin–microtubule complex is essential for understanding the structural basis of the cycle. I discuss the broader implications of the seesaw mechanism within the cycle of a fully functional kinesin dimer and show how the seesaw can account for two types of "gating" that keep the ATPase cycles of the two heads out of sync during processive movement

    Polychlorinated Biphenyls and Biotransformation Enzymes in Three Species of Sea Turtles from the Baja California Peninsula of Mexico

    Get PDF
    Concentrations of polychlorinated biphenyls (PCBs) as well as the expression patterns of cytochrome P450 (CYP) enzymes and glutathione-S-transferase (GST) activities were measured in livers of loggerhead (Caretta caretta), green (Chelonia mydas), and olive ridley (Lepidocheyls olivacea) sea turtles from the Baja California peninsula of Mexico. The mean concentrations of total PCBs were 18.1, 10.5, and 15.2 ng/g wet weight (ww) respectively for the three species and PCB 153 was the dominant congener in all samples. Total PCB concentrations were dominated by penta- and hexa-chlorinated biphenyls. The mean estimated TEQs were 42.8, 22.9, and 10.4 pg/g (ww) for loggerhead, green, and olive ridley, respectively, and more than 70% was accounted for by non-ortho PCBs. Western blots revealed the presence of hepatic microsomal proteins that cross-reacted with anti-CYP2K1 and anti-CYP3A27 antibodies but not with anti-CYP1A antibody. There were no significant differences in GST activities between species. Grouping congeners based on structure–activity relationships for CYP isoenzymes suggested limited activity of CYP1A contribution to PCB biotransformation in sea turtles. These results suggest potential accumulation of PCBs that are CYP1A substrates and provide evidence for biotransformation capacity, which differs from known animal models, highlighting the need for further studies in reptiles, particularly those threatened with extinction

    Genetic variability in CYP3A4 and CYP3A5 in primary liver, gastric and colorectal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug-metabolizing enzymes play a role in chemical carcinogenesis through enzymatic activation of procarcinogens to biologically reactive metabolites. The role of gene polymorphisms of several cytochrome P450 enzymes in digestive cancer risk has been extensively investigated. However, the drug-metabolizing enzymes with the broader substrate specificity, CYP3A4 and CYP3A5, have not been analyzed so far. This study aims to examine associations between common CYP3A4 and CYP3A5 polymorphisms and digestive cancer risk.</p> <p>Methods</p> <p>CYP3A4 and CYP3A5 genotypes were determined in 574 individuals including 178 patients with primary liver cancer, 82 patients with gastric cancer, 151 patients with colorectal cancer, and 163 healthy individuals.</p> <p>Results</p> <p>The variant allele frequencies for patients with liver cancer, gastric cancer, colorectal cancer and healthy controls, respectively, were: <it>CYP3A4*1B</it>, 4.8 % (95% C.I. 2.6–7.0), 3.7 % (0.8–6.6) 4.3% (2.0–6.6) and 4.3% (2.1–6.5); <it>CYP3A5*3</it>, 91.8 % (93.0–97.4), 95.7% (92.6–98.8), 91.7% (88.6–94.8) and 90.8% (87.7–93.9). The association between <it>CYP3A4*1B </it>and <it>CYP3A5*3 </it>variant alleles did not significantly differ among patients and controls. No differences in genotypes, allele frequencies, or association between variant alleles were observed with regard to gender, age at diagnosis, tumour site or stage.</p> <p>Conclusion</p> <p>Common polymorphisms on <it>CYP3A4 </it>and <it>CYP3A5 </it>genes do not modify the risk of developing digestive cancers in Western Europe.</p

    Systematic meta-review of supported self-management for asthma: a healthcare perspective

    Get PDF
    BACKGROUND: Supported self-management has been recommended by asthma guidelines for three decades; improving current suboptimal implementation will require commitment from professionals, patients and healthcare organisations. The Practical Systematic Review of Self-Management Support (PRISMS) meta-review and Reducing Care Utilisation through Self-management Interventions (RECURSIVE) health economic review were commissioned to provide a systematic overview of supported self-management to inform implementation. We sought to investigate if supported asthma self-management reduces use of healthcare resources and improves asthma control; for which target groups it works; and which components and contextual factors contribute to effectiveness. Finally, we investigated the costs to healthcare services of providing supported self-management. METHODS: We undertook a meta-review (systematic overview) of systematic reviews updated with randomised controlled trials (RCTs) published since the review search dates, and health economic meta-analysis of RCTs. Twelve electronic databases were searched in 2012 (updated in 2015; pre-publication update January 2017) for systematic reviews reporting RCTs (and update RCTs) evaluating supported asthma self-management. We assessed the quality of included studies and undertook a meta-analysis and narrative synthesis. RESULTS: A total of 27 systematic reviews (n = 244 RCTs) and 13 update RCTs revealed that supported self-management can reduce hospitalisations, accident and emergency attendances and unscheduled consultations, and improve markers of control and quality of life for people with asthma across a range of cultural, demographic and healthcare settings. Core components are patient education, provision of an action plan and regular professional review. Self-management is most effective when delivered in the context of proactive long-term condition management. The total cost (n = 24 RCTs) of providing self-management support is offset by a reduction in hospitalisations and accident and emergency visits (standard mean difference 0.13, 95% confidence interval -0.09 to 0.34). CONCLUSIONS: Evidence from a total of 270 RCTs confirms that supported self-management for asthma can reduce unscheduled care and improve asthma control, can be delivered effectively for diverse demographic and cultural groups, is applicable in a broad range of clinical settings, and does not significantly increase total healthcare costs. Informed by this comprehensive synthesis of the literature, clinicians, patient-interest groups, policy-makers and providers of healthcare services should prioritise provision of supported self-management for people with asthma as a core component of routine care. SYSTEMATIC REVIEW REGISTRATION: RECURSIVE: PROSPERO CRD42012002694 ; PRISMS: PROSPERO does not register meta-reviews
    corecore