585 research outputs found

    Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire

    Full text link
    Soon after the first measurements of nuclear magnetic resonance (NMR) in a condensed matter system, Bloch predicted the presence of statistical fluctuations proportional to 1/N1/\sqrt{N} in the polarization of an ensemble of NN spins. First observed by Sleator et al., so-called "spin noise" has recently emerged as a critical ingredient in nanometer-scale magnetic resonance imaging (nanoMRI). This prominence is a direct result of MRI resolution improving to better than 100 nm^3, a size-scale in which statistical spin fluctuations begin to dominate the polarization dynamics. We demonstrate a technique that creates spin order in nanometer-scale ensembles of nuclear spins by harnessing these fluctuations to produce polarizations both larger and narrower than the natural thermal distribution. We focus on ensembles containing ~10^6 phosphorus and hydrogen spins associated with single InP and GaP nanowires (NWs) and their hydrogen-containing adsorbate layers. We monitor, control, and capture fluctuations in the ensemble's spin polarization in real-time and store them for extended periods. This selective capture of large polarization fluctuations may provide a route for enhancing the weak magnetic signals produced by nanometer-scale volumes of nuclear spins. The scheme may also prove useful for initializing the nuclear hyperfine field of electron spin qubits in the solid-state.Comment: 18 pages, 5 figure

    Alcohol Production as an Adaptive Livelihood Strategy for Women Farmers in Tanzania and Its Potential for Unintended Consequences on Women's Reproductive Health.

    Get PDF
    Although women occupy a central position in agriculture in many developing countries, they face numerous constraints to achieving their full potential including unequal access to assets and limited decision-making authority. We explore the intersection of agricultural livelihoods, food and economic security, and women's sexual and reproductive health in Iringa Region, Tanzania. Our goal was to understand whether the benefits of supporting women in the agricultural sector might also extend to more distal outcomes, including sexual and reproductive health. Using the Sustainable Livelihoods Framework to guide data collection, we conducted 13 focus group discussions (FGD) with female (n = 11) and male farmers (n = 2) and 20 in-depth interviews with agricultural extension officers (n = 10) and village agro-dealers (n = 10). Despite providing the majority of agricultural labor, women have limited control over land and earned income and have little bargaining power. In response to these constraints, women adopt adaptive livelihood strategies, such as alcohol production, that allow them to retain control over income and support their households. However, women's central role in alcohol production, in concert with the ubiquitous nature of alcohol consumption, places them at risk by enhancing their vulnerability to unsafe or transactional sex. This represents a dangerous confluence of risk for female farmers, in which alcohol plays an important role in income generation and also facilitates high-risk sexual behavior. Alcohol production and consumption has the potential to both directly and indirectly place women at risk for undesirable sexual and reproductive health outcomes. Group formation, better access to finance, and engaging with agricultural extension officers were identified as potential interventions for supporting women farmers and challenging harmful gender norms. In addition, joint, multi-sectoral approaches from health and agriculture and alternative income-generating strategies for women might better address the complexities of achieving safe and sustainable livelihoods for women in this context

    Evaluating the effects of bilingual traffic signs on driver performance and safety

    Get PDF
    Variable Message Signs (VMS) can provide immediate and relevant information to road users and bilingual VMS can provide great flexibility in countries where a significant proportion of the population speak an alternative language to the majority. The study reported here evaluates the effect of various bilingual VMS configurations on driver behaviour and safety. The aim of the study was to determine whether or not the visual distraction associated with bilingual VMS signs of different configurations (length, complexity) impacted on driving performance. A driving simulator was used to allow full control over the scenarios, road environment and sign configuration and both longitudinal and lateral driver performance was assessed. Drivers were able to read one and two-line monolingual signs and two-line bilingual signs without disruption to their driving behaviour. However, drivers significantly reduced their speed in order to read four-line monolingual and four-line bilingual signs, accompanied by an increase in headway to the vehicle in front. This implies that drivers are possibly reading the irrelevant text on the bilingual sign and various methods for reducing this effect are discussed

    Structural insights into Clostridium perfringens delta toxin pore formation

    Get PDF
    Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins

    Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor

    Get PDF
    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins

    Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria

    Get PDF
    The outer membrane (OM) of Gram-negative bacteria is a unique asymmetric lipid bilayer in which the outer leaflet is composed of lipopolysaccharide (LPS) and the inner leaflet is formed by glycerophospholipid (GPL). The OM plays a fundamental role in protecting Gram-negative bacteria from harsh environments and toxic compounds. The transport and assembly pathways for phospholipids of bacterial OM are unknown. Cardiolipin (CL) plays an important role in OM biogenesis and pathogenesis, and the inner membrane (IM) protein PbgA, containing five transmembrane domains and a globular domain in periplasm has been recently identified as a CL transporter from the IM to the OM with an unknown mechanism. Here we present the first two crystal structures of soluble periplasmic globular domain of PbgA from S. typhimurium and E. coli, which revealed that the globular domains of PbgA resemble the structures of the arylsulfatase protein family and contains a novel core hydrophobic pocket that may be responsible for binding and transporting CLs. Our structural and functional studies shed an important light on the mechanism of CL transport in Gram-negative bacteria from the IM to the OM, which offers great potential for the development of novel antibiotics against multi-drug resistant bacterial infections

    Commercial Immunoglobulin Products Contain Neutralizing Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein

    Get PDF
    BACKGROUND: Patients with antibody deficiency respond poorly to COVID-19 vaccination and are at risk of severe or prolonged infection. They are given long-term immunoglobulin replacement therapy (IRT) prepared from healthy donor plasma to confer passive immunity against infection. Following widespread COVID-19 vaccination alongside natural exposure, we hypothesised that immunoglobulin preparations will now contain neutralising SARS-CoV-2 spike antibodies which confer protection against COVID-19 disease and may help to treat chronic infection. METHODS: We evaluated anti-SARS-CoV-2 spike antibody in a cohort of patients before and after immunoglobulin infusion. Neutralising capacity of patient samples and immunoglobulin products was assessed using in vitro pseudo-virus and live-virus neutralisation assays, the latter investigating multiple batches against current circulating omicron variants. We describe the clinical course of nine patients started on IRT during treatment of COVID-19. RESULTS: In 35 individuals with antibody deficiency established on IRT, median anti-spike antibody titre increased from 2123 to 10600 U/ml post-infusion, with corresponding increase in pseudo-virus neutralisation titres to levels comparable to healthy donors. Testing immunoglobulin products directly in the live-virus assay confirmed neutralisation, including of BQ1.1 and XBB variants, but with variation between immunoglobulin products and batches.Initiation of IRT alongside Remdesivir in patients with antibody deficiency and prolonged COVID-19 infection (median 189 days, maximum over 900 days with an ancestral viral strain) resulted in clearance of SARS-CoV-2 virus at a median of 20 days. CONCLUSIONS: Immunoglobulin preparations now contain neutralising anti-SARS-CoV-2 antibodies which are transmitted to patients and help to treat COVID-19 in individuals with failure of humoral immunity

    A two-domain elevator mechanism for sodium/proton antiport

    Get PDF
    Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general

    Functional Analysis of the Cytoskeleton Protein MreB from Chlamydophila pneumoniae

    Get PDF
    In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae
    • …
    corecore