120 research outputs found
A Mouse Model of Heritable Cerebrovascular Disease
The study of animal models of heritable cerebrovascular diseases can improve our understanding of disease mechanisms, identify candidate genes for related human disorders, and provide experimental models for preclinical trials. Here we describe a spontaneous mouse mutation that results in reproducible, adult-onset, progressive, focal ischemia in the brain. The pathology is not the result of hemorrhage, embolism, or an anatomical abnormality in the cerebral vasculature. The mutation maps as a single site recessive locus to mouse Chromosome 9 at 105 Mb, a region of shared synteny with human chromosome 3q22. The genetic interval, defined by recombination mapping, contains seven protein-coding genes and one processed transcript, none of which are changed in their expression level, splicing, or sequence in affected mice. Targeted resequencing of the entire interval did not reveal any provocative changes; thus, the causative molecular lesion has not been identified
Quantitative methods to monitor RNA biomarkers in myotonic dystrophy
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are human neuromuscular disorders associated with mutations of simple repetitive sequences in afected genes. The abnormal expansion of CTG repeats in the 3′-UTR of the DMPK gene elicits DM1, whereas elongated CCTG repeats in intron 1 of ZNF9/CNBP triggers DM2. Pathogenesis of both disorders is manifested by nuclear retention of expanded repeat containing RNAs and aberrant alternative splicing. The precise determination of absolute numbers of mutant RNA molecules is important for a better understanding of disease complexity and for accurate evaluation of the efficacy of therapeutic drugs. We present two quantitative methods, Multiplex Ligation-Dependent Probe Amplifcation and droplet digital PCR, for studying the mutant DMPK transcript (DMPKexpRNA) and the aberrant alternative splicing in DM1 and DM2 human tissues and cells. We demonstrate that in DM1, the DMPKexpRNA is detected in higher copy number than its normal counterpart. Moreover, the absolute number of the mutant transcript indicates its low abundance with only a few copies per cell in DM1 fibroblasts. Most importantly, in conjunction with fuorescence in-situ hybridization experiments, our results suggest that in DM1 fibroblasts, the vast majority of nuclear RNA foci consist of a few molecules of DMPKexpRNA
High disease impact of myotonic dystrophy type 2 on physical and mental functioning
The aim of the study was to investigate health status in patients with myotonic dystrophy type 2 (DM2) and determine its relationship to pain and fatigue. Data on health status (SF-36), pain (MPQ) and fatigue (CIS-fatigue) were collected for the Dutch DM2 population (n = 32). Results were compared with those of sex- and age-matched adult-onset myotonic dystrophy type 1 (DM1) patients. In addition, we compared the obtained scores on health status of the DM2 group with normative data of the Dutch general population (n = 1742). Compared to DM1, the SF-36 score for bodily pain was significantly (p = 0.04) lower in DM2, indicating more body pain in DM2. DM2 did not differ from DM1 on any other SF-36 scales. In comparison to the Dutch population, DM2 patients reported lower scores (indicating worse clinical condition) on the physical functioning, role functioning-physical, bodily pain, general health, vitality, social functioning, and role functioning-emotional scales (p < 0.01 on all scales). The difference was most profound for the physical functioning scale. In the DM2 group the severity of pain was significantly correlated with SF-36 scores for bodily pain (p = 0.003). Fatigue was significantly correlated with the SF-36 scores for role functioning-physical (p = 0.001), general health (p = 0.02), and vitality (p = 0.02). The impact of DM2 on a patients’ physical, psychological and social functioning is significant and as high as in adult-onset DM1 patients. From the perspective of health-related quality of life, DM2 should not be considered a benign disease. Management of DM2 patients should include screening for pain and fatigue. Symptomatic treatment of pain and fatigue may decrease disease impact and help improve health status in DM2, even if the disease itself cannot be treated
Ubiquitous Expression of CUG or CAG Trinucleotide Repeat RNA Causes Common Morphological Defects in a Drosophila Model of RNA-Mediated Pathology
Expanded DNA repeat sequences are known to cause over 20 diseases, including Huntington’s disease, several types of spinocerebellar ataxia and myotonic dystrophy type 1 and 2. A shared genetic basis, and overlapping clinical features for some of these diseases, indicate that common pathways may contribute to pathology. Multiple mechanisms, mediated by both expanded homopolymeric proteins and expanded repeat RNA, have been identified by the use of model systems, that may account for shared pathology. The use of such animal models enables identification of distinct pathways and their ‘molecular hallmarks’ that can be used to determine the contribution of each pathway in human pathology. Here we characterise a tergite disruption phenotype in adult flies, caused by ubiquitous expression of either untranslated CUG or CAG expanded repeat RNA. Using the tergite phenotype as a quantitative trait we define a new genetic system in which to examine ‘hairpin’ repeat RNA-mediated cellular perturbation. Further experiments use this system to examine whether pathways involving Muscleblind sequestration or Dicer processing, which have been shown to mediate repeat RNA-mediated pathology in other model systems, contribute to cellular perturbation in this model
Micro-CT imaging reveals<i> Mekk3 </i>heterozygosity prevents cerebral cavernous malformations in <i>Ccm2</i>-deficient mice
Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. However, the full value of these animal models is limited by the lack of an accurate and quantitative method to assess lesion burden and progression. In the present study we have established a refined and detailed contrast enhanced X-ray micro-CT method to measure CCM lesion burden in mouse brains. As this study utilized a voxel dimension of 9.5μm (leading to a minimum feature size of approximately 25μm), it is therefore sufficient to measure CCM lesion volume and number globally and accurately, and provide high-resolution 3-D mapping of CCM lesions in mouse brains. Using this method, we found loss of Ccm1 or Ccm2 in neonatal endothelium confers CCM lesions in the mouse hindbrain with similar total volume and number. This quantitative approach also demonstrated a rescue of CCM lesions with simultaneous deletion of one allele of Mekk3. This method would enhance the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases
Deregulated MicroRNAs in Myotonic Dystrophy Type 2
Myotonic Dystrophy Type-2 (DM2) is an autosomal dominant disease caused by the expansion of a CCTG tetraplet repeat. It is a multisystemic disorder, affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system. Since microRNA (miRNA) expression is disrupted in Myotonic Dystrophy Type-1 and many other myopathies, miRNAs deregulation was studied in skeletal muscle biopsies of 13 DM2 patients and 13 controls. Eleven miRNAs were deregulated: 9 displayed higher levels compared to controls (miR-34a-5p, miR-34b-3p, miR-34c-5p, miR-146b-5p, miR-208a, miR-221-3p and miR-381), while 4 were decreased (miR-125b-5p, miR-193a-3p, miR-193b-3p and miR-378a-3p). To explore the relevance of DM2 miRNA deregulation, the predicted interactions between miRNA and mRNA were investigated. Global gene expression was analyzed in DM2 and controls and bioinformatic analysis identified more than 1,000 miRNA/mRNA interactions. Pathway and function analysis highlighted the involvement of the miRNA-deregulated mRNAs in multiple aspects of DM2 pathophysiology. In conclusion, the observed miRNA dysregulations may contribute to DM2 pathogenetic mechanisms
Long Tract of Untranslated CAG Repeats Is Deleterious in Transgenic Mice
The most frequent trinucleotide repeat found in human disorders is the CAG sequence. Expansion of CAG repeats is mostly found in coding regions and is thought to cause diseases through a protein mechanism. Recently, expanded CAG repeats were shown to induce toxicity at the RNA level in Drosophila and C. elegans. These findings raise the possibility that CAG repeats may trigger RNA-mediated pathogenesis in mammals. Here, we demonstrate that transgenic mice expressing EGFP transcripts with long CAG repeats in the 3′ untranslated region develop pathogenic features. Expression of the transgene was directed to the muscle in order to compare the resulting phenotype to that caused by the CUG expansion, as occurs in myotonic dystrophy. Transgenic mice expressing 200, but not those expressing 0 or 23 CAG repeats, showed alterations in muscle morphology, histochemistry and electrophysiology, as well as abnormal behavioral phenotypes. Expression of the expanded CAG repeats in testes resulted in reduced fertility due to defective sperm motility. The production of EGFP protein was significantly reduced by the 200 CAG repeats, and no polyglutamine-containing product was detected, which argues against a protein mechanism. Moreover, nuclear RNA foci were detected for the long CAG repeats. These data support the notion that expanded CAG repeat RNA can cause deleterious effects in mammals. They also suggest the possible involvement of an RNA mechanism in human diseases with long CAG repeats
Defining the Functional Domain of Programmed Cell Death 10 through Its Interactions with Phosphatidylinositol-3,4,5-Trisphosphate
Cerebral cavernous malformations (CCM) are vascular abnormalities of the central nervous system predisposing blood vessels to leakage, leading to hemorrhagic stroke. Three genes, Krit1 (CCM1), OSM (CCM2), and PDCD10 (CCM3) are involved in CCM development. PDCD10 binds specifically to PtdIns(3,4,5)P3 and OSM. Using threading analysis and multi-template modeling, we constructed a three-dimensional model of PDCD10. PDCD10 appears to be a six-helical-bundle protein formed by two heptad-repeat-hairpin structures (α1–3 and α4–6) sharing the closest 3D homology with the bacterial phosphate transporter, PhoU. We identified a stretch of five lysines forming an amphipathic helix, a potential PtdIns(3,4,5)P3 binding site, in the α5 helix. We generated a recombinant wild-type (WT) and three PDCD10 mutants that have two (Δ2KA), three (Δ3KA), and five (Δ5KA) K to A mutations. Δ2KA and Δ3KA mutants hypothetically lack binding residues to PtdIns(3,4,5)P3 at the beginning and the end of predicted helix, while Δ5KA completely lacks all predicted binding residues. The WT, Δ2KA, and Δ3KA mutants maintain their binding to PtdIns(3,4,5)P3. Only the Δ5KA abolishes binding to PtdIns(3,4,5)P3. Both Δ5KA and WT show similar secondary and tertiary structures; however, Δ5KA does not bind to OSM. When WT and Δ5KA are co-expressed with membrane-bound constitutively-active PI3 kinase (p110-CAAX), the majority of the WT is co-localized with p110-CAAX at the plasma membrane where PtdIns(3,4,5)P3 is presumably abundant. In contrast, the Δ5KA remains in the cytoplasm and is not present in the plasma membrane. Combining computational modeling and biological data, we propose that the CCM protein complex functions in the PI3K signaling pathway through the interaction between PDCD10 and PtdIns(3,4,5)P3
- …