276 research outputs found
c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae.
Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization
A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks
This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST),
Pakistan, and the Higher Education Commission, Pakistan
First Steps towards Underdominant Genetic Transformation of Insect Populations
The idea of introducing genetic modifications into wild populations of insects to stop them from spreading diseases is more than 40 years old. Synthetic disease refractory genes have been successfully generated for mosquito vectors of dengue fever and human malaria. Equally important is the development of population transformation systems to drive and maintain disease refractory genes at high frequency in populations. We demonstrate an underdominant population transformation system in Drosophila melanogaster that has the property of being both spatially self-limiting and reversible to the original genetic state. Both population transformation and its reversal can be largely achieved within as few as 5 generations. The described genetic construct {Ud} is composed of two genes; (1) a UAS-RpL14.dsRNA targeting RNAi to a haploinsufficient gene RpL14 and (2) an RNAi insensitive RpL14 rescue. In this proof-of-principle system the UAS-RpL14.dsRNA knock-down gene is placed under the control of an Actin5c-GAL4 driver located on a different chromosome to the {Ud} insert. This configuration would not be effective in wild populations without incorporating the Actin5c-GAL4 driver as part of the {Ud} construct (or replacing the UAS promoter with an appropriate direct promoter). It is however anticipated that the approach that underlies this underdominant system could potentially be applied to a number of species.
Figure
Documenting the NICU design dilemma: comparative patient progress in open-ward and single family room units
Objective:To test the efficacy of single family room (SFR) neonatal intensive care unit (NICU) designs, questions regarding patient medical progress and relative patient safety were explored. Addressing these questions would be of value to hospital staff, administrators and designers alike. Study Design:This prospective study documented, by means of Institution Review Board-approved protocols, the progress of patients in two contrasting NICU designs. Noise levels, illumination and air quality measurements were included to define the two NICU physical environments. Result:Infants in the SFR unit had fewer apneic events, reduced nosocomial sepsis and mortality, as well as earlier transitions to enteral nutrition. More mothers sustained stage III lactation, and more infants were discharged breastfeeding in the SFR. Conclusion:This study showed the SFR to be more conducive to family-centered care, and to enhance infant medical progress and breastfeeding success over that of an open ward
Growth Arrest of BCR-ABL Positive Cells with a Sequence-Specific Polyamide-Chlorambucil Conjugate
Chronic myeloid leukemia (CML) is characterized by the presence of a constitutively active Abl kinase, which is the product of a chimeric BCR-ABL gene, caused by the genetic translocation known as the Philadelphia chromosome. Imatinib, a selective inhibitor of the Bcr-Abl tyrosine kinase, has significantly improved the clinical outcome of patients with CML. However, subsets of patients lose their response to treatment through the emergence of imatinib-resistant cells, and imatinib treatment is less durable for patients with late stage CML. Although alternative Bcr-Abl tyrosine kinase inhibitors have been developed to overcome drug resistance, a cocktail therapy of different kinase inhibitors and additional chemotherapeutics may be needed for complete remission of CML in some cases. Chlorambucil has been used for treatment of B cell chronic lymphocytic leukemia, non-Hodgkin's and Hodgkin's disease. Here we report that a DNA sequence-specific pyrrole-imidazole polyamide-chlorambucil conjugate, 1R-Chl, causes growth arrest of cells harboring both unmutated BCR-ABL and three imatinib resistant strains. 1R-Chl also displays selective toxicities against activated lymphocytes and a high dose tolerance in a murine model
A Comparison of Different Approaches to Unravel the Latent Structure within Metabolic Syndrome
Background: Exploratory factor analysis is a commonly used statistical technique in metabolic syndrome research to uncover latent structure amongst metabolic variables. The application of factor analysis requires methodological decisions that reflect the hypothesis of the metabolic syndrome construct. These decisions often raise the complexity of the interpretation from the output. We propose two alternative techniques developed from cluster analysis which can achieve a clinically relevant structure, whilst maintaining intuitive advantages of clustering methodology. Methods: Two advanced techniques of clustering in the VARCLUS and matroid methods are discussed and implemented on a metabolic syndrome data set to analyze the structure of ten metabolic risk factors. The subjects were selected from the normative aging study based in Boston, Massachusetts. The sample included a total of 847 men aged between 21 and 81 years who provided complete data on selected risk factors during the period 1987 to 1991. Results: Four core components were identified by the clustering methods. These are labelled obesity, lipids, insulin resistance and blood pressure. The exploratory factor analysis with oblique rotation suggested an overlap of the loadings identified on the insulin resistance and obesity factors. The VARCLUS and matroid analyses separated these components and were able to demonstrate associations between individual risk factors. Conclusions: An oblique rotation can be selected to reflect the clinical concept of a single underlying syndrome, howeve
Impact of DOTS expansion on tuberculosis related outcomes and costs in Haiti
BACKGROUND: Implementation of the World Health Organization's DOTS strategy (Directly Observed Treatment Short-course therapy) can result in significant reduction in tuberculosis incidence. We estimated potential costs and benefits of DOTS expansion in Haiti from the government, and societal perspectives. METHODS: Using decision analysis incorporating multiple Markov processes (Markov modelling), we compared expected tuberculosis morbidity, mortality and costs in Haiti with DOTS expansion to reach all of the country, and achieve WHO benchmarks, or if the current situation did not change. Probabilities of tuberculosis related outcomes were derived from the published literature. Government health expenditures, patient and family costs were measured in direct surveys in Haiti and expressed in 2003 US4.2 million and result in 63,080 fewer tuberculosis cases, 53,120 fewer tuberculosis deaths, and net societal savings of $131 million, over 20 years. Current government spending for tuberculosis is high, relative to the per capita income, and would be only slightly lower with DOTS. Societal savings would begin within 4 years, and would be substantial in all scenarios considered, including higher HIV seroprevalence or drug resistance, unchanged incidence following DOTS expansion, or doubling of initial and ongoing costs for DOTS expansion. CONCLUSION: A modest investment for DOTS expansion in Haiti would provide considerable humanitarian benefit by reducing tuberculosis-related morbidity, mortality and costs for patients and their families. These benefits, together with projected minimal Haitian government savings, argue strongly for donor support for DOTS expansion
- …