253 research outputs found

    Do red deer stags (Cervus elaphus) use roar fundamental frequency (F0) to assess rivals?

    Get PDF
    It is well established that in humans, male voices are disproportionately lower pitched than female voices, and recent studies suggest that this dimorphism in fundamental frequency (F0) results from both intrasexual (male competition) and intersexual (female mate choice) selection for lower pitched voices in men. However, comparative investigations indicate that sexual dimorphism in F0 is not universal in terrestrial mammals. In the highly polygynous and sexually dimorphic Scottish red deer Cervus elaphus scoticus, more successful males give sexually-selected calls (roars) with higher minimum F0s, suggesting that high, rather than low F0s advertise quality in this subspecies. While playback experiments demonstrated that oestrous females prefer higher pitched roars, the potential role of roar F0 in male competition remains untested. Here we examined the response of rutting red deer stags to playbacks of re-synthesized male roars with different median F0s. Our results show that stags’ responses (latencies and durations of attention, vocal and approach responses) were not affected by the F0 of the roar. This suggests that intrasexual selection is unlikely to strongly influence the evolution of roar F0 in Scottish red deer stags, and illustrates how the F0 of terrestrial mammal vocal sexual signals may be subject to different selection pressures across species. Further investigations on species characterized by different F0 profiles are needed to provide a comparative background for evolutionary interpretations of sex differences in mammalian vocalizations

    How do you say ‘hello’? Personality impressions from brief novel voices

    Get PDF
    On hearing a novel voice, listeners readily form personality impressions of that speaker. Accurate or not, these impressions are known to affect subsequent interactions; yet the underlying psychological and acoustical bases remain poorly understood. Furthermore, hitherto studies have focussed on extended speech as opposed to analysing the instantaneous impressions we obtain from first experience. In this paper, through a mass online rating experiment, 320 participants rated 64 sub-second vocal utterances of the word ‘hello’ on one of 10 personality traits. We show that: (1) personality judgements of brief utterances from unfamiliar speakers are consistent across listeners; (2) a two-dimensional ‘social voice space’ with axes mapping Valence (Trust, Likeability) and Dominance, each driven by differing combinations of vocal acoustics, adequately summarises ratings in both male and female voices; and (3) a positive combination of Valence and Dominance results in increased perceived male vocal Attractiveness, whereas perceived female vocal Attractiveness is largely controlled by increasing Valence. Results are discussed in relation to the rapid evaluation of personality and, in turn, the intent of others, as being driven by survival mechanisms via approach or avoidance behaviours. These findings provide empirical bases for predicting personality impressions from acoustical analyses of short utterances and for generating desired personality impressions in artificial voices

    Low Frequency Groans Indicate Larger and More Dominant Fallow Deer (Dama dama) Males

    Get PDF
    Background: Models of honest advertisement predict that sexually selected calls should signal male quality. In most vertebrates, high quality males have larger body sizes that determine higher social status and in turn higher reproductive success. Previous research has emphasised the importance of vocal tract resonances or formant frequencies of calls as cues to body size in mammals. However, the role of the acoustic features of vocalisations as cues to other quality-related phenotypic characteristics of callers has rarely been investigated. Methodology/Principal Findings: We examined whether the acoustic structure of fallow deer groans provides reliable information on the quality of the caller, by exploring the relationships between male quality (body size, dominance rank, and mating success) and the frequency components of calls (fundamental frequency, formant frequencies, and formant dispersion). We found that body size was not related to the fundamental frequency of groans, whereas larger males produced groans with lower formant frequencies and lower formant dispersion. Groans of high-ranking males were characterised by lower minimum fundamental frequencies and to a lesser extent, by lower formant dispersions. Dominance rank was the factor most strongly related to mating success, with higher-ranking males having higher mating success. The minimum fundamental frequency and the minimum formant dispersion were indirectly related to male mating success (through dominance rank). Conclusion/Significance: Our study is the first to show that sexually selected vocalisations can signal social dominance in mammals other than primates, and reveals that independent acoustic components encode accurate information on different phenotypic aspects of male quality

    Atypical birdsong and artificial languages provide insights into how communication systems are shaped by learning, use and transmission

    Get PDF
    In this article, I argue that a comparative approach focusing on the cognitive capacities and behavioral mechanisms that underlie vocal learning in songbirds and humans can provide valuable insights into the evolutionary origins of language. The experimental approaches I discuss use abnormal song and atypical linguistic input to study the processes of individual learning, social interaction, and cultural transmission. Atypical input places increased learning and communicative pressure on learners, so exploring how they respond to this type of input provides a particularly clear picture of the biases and constraints at work during learning and use. Furthermore, simulating the cultural transmission of these unnatural communication systems in the laboratory informs us about how learning and social biases influence the structure of communication systems in the long run. Findings based on these methods suggest fundamental similarities in the basic social–cognitive mechanisms underlying vocal learning in birds and humans, and continuing research promises insights into the uniquely human mechanisms and into how human cognition and social behavior interact, and ultimately impact on the evolution of language

    Amino Acid Metabolic Origin as an Evolutionary Influence on Protein Sequence in Yeast

    Get PDF
    The metabolic cycle of Saccharomyces cerevisiae consists of alternating oxidative (respiration) and reductive (glycolysis) energy-yielding reactions. The intracellular concentrations of amino acid precursors generated by these reactions oscillate accordingly, attaining maximal concentration during the middle of their respective yeast metabolic cycle phases. Typically, the amino acids themselves are most abundant at the end of their precursor’s phase. We show that this metabolic cycling has likely biased the amino acid composition of proteins across the S. cerevisiae genome. In particular, we observed that the metabolic source of amino acids is the single most important source of variation in the amino acid compositions of functionally related proteins and that this signal appears only in (facultative) organisms using both oxidative and reductive metabolism. Periodically expressed proteins are enriched for amino acids generated in the preceding phase of the metabolic cycle. Proteins expressed during the oxidative phase contain more glycolysis-derived amino acids, whereas proteins expressed during the reductive phase contain more respiration-derived amino acids. Rare amino acids (e.g., tryptophan) are greatly overrepresented or underrepresented, relative to the proteomic average, in periodically expressed proteins, whereas common amino acids vary by a few percent. Genome-wide, we infer that 20,000 to 60,000 residues have been modified by this previously unappreciated pressure. This trend is strongest in ancient proteins, suggesting that oscillating endogenous amino acid availability exerted genome-wide selective pressure on protein sequences across evolutionary time

    Impact of in utero exposure to EtOH on corpus callosum development and paw preference in rats: protective effects of silymarin

    Get PDF
    BACKGROUND: Using a rat model we have found that the bioflavonoid silymarin (SY) ameliorates some of the negative consequences of in utero exposure to ethanol (EtOH). In the current study our aim was to determine if laterality preference and corpus callosum development were altered in rat offspring whose mothers were provided with a concomitant administration of SY with EtOH throughout gestation. METHODS: We provided pregnant Fisher/344 rats with liquid diets containing 35% ethanol derived calories (EDC) throughout the gestational period. A silymarin/phospholipid compound containing 29.8% silybin was co administered with EtOH to a separate experimental group. We tested the offspring for laterality preference at age 12 weeks. After testing the rats were sacrificed and their brains perfused for later corpus callosum extraction. RESULTS: We observed incomplete development of the splenium in the EtOH-only offspring. Callosal development was complete in all other treatment groups. Rats from the EtOH-only group displayed a left paw preference; whereas control rats were evenly divided between right and left paw preference. Inexplicably both SY groups were largely right paw preferring. CONCLUSIONS: The addition of SY to the EtOH liquid diet did confer some ameliorative effects upon the developing fetal rat brain

    Testing the Ortholog Conjecture with Comparative Functional Genomic Data from Mammals

    Get PDF
    A common assumption in comparative genomics is that orthologous genes share greater functional similarity than do paralogous genes (the “ortholog conjecture”). Many methods used to computationally predict protein function are based on this assumption, even though it is largely untested. Here we present the first large-scale test of the ortholog conjecture using comparative functional genomic data from human and mouse. We use the experimentally derived functions of more than 8,900 genes, as well as an independent microarray dataset, to directly assess our ability to predict function using both orthologs and paralogs. Both datasets show that paralogs are often a much better predictor of function than are orthologs, even at lower sequence identities. Among paralogs, those found within the same species are consistently more functionally similar than those found in a different species. We also find that paralogous pairs residing on the same chromosome are more functionally similar than those on different chromosomes, perhaps due to higher levels of interlocus gene conversion between these pairs. In addition to offering implications for the computational prediction of protein function, our results shed light on the relationship between sequence divergence and functional divergence. We conclude that the most important factor in the evolution of function is not amino acid sequence, but rather the cellular context in which proteins act

    Development of Gaze Following Abilities in Wolves (Canis Lupus)

    Get PDF
    The ability to coordinate with others' head and eye orientation to look in the same direction is considered a key step towards an understanding of others mental states like attention and intention. Here, we investigated the ontogeny and habituation patterns of gaze following into distant space and behind barriers in nine hand-raised wolves. We found that these wolves could use conspecific as well as human gaze cues even in the barrier task, which is thought to be more cognitively advanced than gazing into distant space. Moreover, while gaze following into distant space was already present at the age of 14 weeks and subjects did not habituate to repeated cues, gazing around a barrier developed considerably later and animals quickly habituated, supporting the hypothesis that different cognitive mechanisms may underlie the two gaze following modalities. More importantly, this study demonstrated that following another individuals' gaze around a barrier is not restricted to primates and corvids but is also present in canines, with remarkable between-group similarities in the ontogeny of this behaviour. This sheds new light on the evolutionary origins of and selective pressures on gaze following abilities as well as on the sensitivity of domestic dogs towards human communicative cues

    Expression signatures of TP53 mutations in serous ovarian cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the <it>TP53 </it>gene are extremely common and occur very early in the progression of serous ovarian cancers. Gene expression patterns that relate to mutational status may provide insight into the etiology and biology of the disease.</p> <p>Methods</p> <p>The <it>TP53 </it>coding region was sequenced in 89 frozen serous ovarian cancers, 40 early stage (I/II) and 49 advanced stage (III/IV). Affymetrix U133A expression data was used to define gene expression patterns by mutation, type of mutation, and cancer stage.</p> <p>Results</p> <p>Missense or chain terminating (null) mutations in <it>TP53 </it>were found in 59/89 (66%) ovarian cancers. Early stage cancers had a significantly higher rate of null mutations than late stage disease (38% vs. 8%, p < 0.03). In advanced stage cases, mutations were more prevalent in short term survivors than long term survivors (81% vs. 30%, p = 0.0004). Gene expression patterns had a robust ability to predict <it>TP53 </it>status within training data. By using early versus late stage disease for out of sample predictions, the signature derived from early stage cancers could accurately (86%) predict mutation status of late stage cancers.</p> <p>Conclusions</p> <p>This represents the first attempt to define a genomic signature of <it>TP53 </it>mutation in ovarian cancer. Patterns of gene expression characteristic of <it>TP53 </it>mutation could be discerned and included several genes that are known p53 targets or have been described in the context of expression signatures of <it>TP53 </it>mutation in breast cancer.</p

    Different Vocal Parameters Predict Perceptions of Dominance and Attractiveness

    Get PDF
    Low mean fundamental frequency (F0) in men’s voices has been found to positively influence perceptions of dominance by men and attractiveness by women using standardized speech. Using natural speech obtained during an ecologically valid social interaction, we examined relationships between multiple vocal parameters and dominance and attractiveness judgments. Male voices from an unscripted dating game were judged by men for physical and social dominance and by women in fertile and non-fertile menstrual cycle phases for desirability in short-term and long-term relationships. Five vocal parameters were analyzed: mean F0 (an acoustic correlate of vocal fold size), F0 variation, intensity (loudness), utterance duration, and formant dispersion (Df, an acoustic correlate of vocal tract length). Parallel but separate ratings of speech transcripts served as controls for content. Multiple regression analyses were used to examine the independent contributions of each of the predictors. Physical dominance was predicted by low F0 variation and physically dominant word content. Social dominance was predicted only by socially dominant word content. Ratings of attractiveness by women were predicted by low mean F0, low Df, high intensity, and attractive word content across cycle phase and mating context. Low Df was perceived as attractive by fertile-phase women only. We hypothesize that competitors and potential mates may attend more strongly to different components of men’s voices because of the different types of information these vocal parameters provide
    corecore