818 research outputs found
The infection attack rate and severity of 2009 pandemic H1N1 influenza in Hong Kong
Background. Serial cross-sectional data on antibody levels to the 2009 pandemic H1N1 influenza A virus from a population can be used to estimate the infection attack rates and immunity against future infection in the community. Methods. From April through December 2009, we obtained 12,217 serum specimens from blood donors (aged 16-59 years), 2520 specimens from hospital outpatients (aged 5-59 years), and 917 specimens from subjects involved in a community pediatric cohort study (aged 5-14 years). We estimated infection attack rates by comparing the proportions of specimens with antibody titers ≥1:40 by viral microneutralization before and after the first wave of the pandemic. Estimates were validated using paired serum samples from 324 individuals that spanned the first wave. Combining these estimates with epidemiologic surveillance data, we calculated the proportion of infections that led to hospitalization, admission to the intensive care unit (ICU), and death. Results. We found that 3.3% and 14% of persons aged 5-59 years had antibody titers ≥1:40 before and after the first wave, respectively. The overall attack rate was 10.7%, with age stratification as follows: 43.4% in persons aged 5-14 years, 15.8% in persons aged 15-19 years, 11.8% in persons aged 20-29 years, and 4%-4.6% in persons aged 30-59 years. Case-hospitalization rates were 0.47%-0.87% among persons aged 5-59 years. Case-ICU rates were 7.9 cases per 100,000 infections in persons aged 5-14 years and 75 cases per 100,000 infections in persons aged 50-59 years, respectively. Case-fatality rates were 0.4 cases per 100,000 infections in persons aged 5-14 years and 26.5 cases per 100,000 infections in persons aged 50-59 years, respectively. Conclusions. Almost half of all school-aged children in Hong Kong were infected during the first wave. Compared with school children aged 5-14 years, older adults aged 50-59 years had 9.5 and 66 times higher risks of ICU admission and death if infected, respectively. © 2010 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio
Three-Dimensional Spectral-Domain Optical Coherence Tomography Data Analysis for Glaucoma Detection
Purpose: To develop a new three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) data analysis method using a machine learning technique based on variable-size super pixel segmentation that efficiently utilizes full 3D dataset to improve the discrimination between early glaucomatous and healthy eyes. Methods: 192 eyes of 96 subjects (44 healthy, 59 glaucoma suspect and 89 glaucomatous eyes) were scanned with SD-OCT. Each SD-OCT cube dataset was first converted into 2D feature map based on retinal nerve fiber layer (RNFL) segmentation and then divided into various number of super pixels. Unlike the conventional super pixel having a fixed number of points, this newly developed variable-size super pixel is defined as a cluster of homogeneous adjacent pixels with variable size, shape and number. Features of super pixel map were extracted and used as inputs to machine classifier (LogitBoost adaptive boosting) to automatically identify diseased eyes. For discriminating performance assessment, area under the curve (AUC) of the receiver operating characteristics of the machine classifier outputs were compared with the conventional circumpapillary RNFL (cpRNFL) thickness measurements. Results: The super pixel analysis showed statistically significantly higher AUC than the cpRNFL (0.855 vs. 0.707, respectively, p = 0.031, Jackknife test) when glaucoma suspects were discriminated from healthy, while no significant difference was found when confirmed glaucoma eyes were discriminated from healthy eyes. Conclusions: A novel 3D OCT analysis technique performed at least as well as the cpRNFL in glaucoma discrimination and even better at glaucoma suspect discrimination. This new method has the potential to improve early detection of glaucomatous damage. © 2013 Xu et al
Large sulfur isotope fractionations in Martian sediments at Gale crater
Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from −47 ± 14‰ to 28 ± 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods
Longitudinal In Vivo Imaging of Retinal Ganglion Cells and Retinal Thickness Changes Following Optic Nerve Injury in Mice
Retinal ganglion cells (RGCs) die in sight-threatening eye diseases. Imaging RGCs in humans is not currently possible and proof of principle in experimental models is fundamental for future development. Our objective was to quantify RGC density and retinal thickness following optic nerve transection in transgenic mice expressing cyan fluorescent protein (CFP) under control of the Thy1 promoter, expressed by RGCs and other neurons.A modified confocal scanning laser ophthalmoscopy (CSLO)/spectral-domain optical coherence tomography (SD-OCT) camera was used to image and quantify CFP+ cells in mice from the B6.Cg-Tg(Thy1-CFP)23Jrs/J line. SD-OCT circle (1 B-scan), raster (37 B-scans) and radial (24 B-scans) scans of the retina were also obtained. CSLO was performed at baseline (n = 11) and 3 (n = 11), 5 (n = 4), 7 (n = 10), 10 (n = 6), 14 (n = 7) and 21 (n = 5) days post-transection, while SD-OCT was performed at baseline and 7, 14 and 35 days (n = 9) post-transection. Longitudinal change in CFP+ cell density and retinal thickness were computed. Compared to baseline, the mean (SD) percentage CFP+ cells remaining at 3, 5, 7, 10, 14 and 21 days post-transection was 86 (9)%, 63 (11)%, 45 (11)%, 31 (9)%, 20 (9)% and 8 (4)%, respectively. Compared to baseline, the mean (SD) retinal thickness at 7 days post-transection was 97 (3)%, 98 (2)% and 97 (4)% for the circle, raster and radial scans, respectively. The corresponding figures at 14 and 35 days post-transection were 96 (3)%, 97 (2)% and 95 (3)%; and 93 (3)%, 94 (3)% and 92 (3)%.Longitudinal imaging showed an exponential decline in CFP+ cell density and a small (≤8%) reduction in SD-OCT measured retinal thickness post-transection. SD-OCT is a promising tool for detecting structural changes in experimental optic neuropathy. These results represent an important step towards translation for clinical use
Recommended from our members
The effects of ocular magnification on Spectralis spectral domain optical coherence tomography scan length
Purpose
The purpose of this study was to assess the effects of incorporating individual ocular biometry measures of corneal curvature, refractive error, and axial length on scan length obtained using Spectralis spectral domain optical coherence tomography (SD-OCT).
Methods
Two SD-OCT scans were acquired for 50 eyes of 50 healthy participants, first using the Spectralis default keratometry (K) setting followed by incorporating individual mean-K values. Resulting scan lengths were compared to predicted scan lengths produced by image simulation software, based on individual ocular biometry measures including axial length.
Results
Axial length varied from 21.41 to 29.04 mm. Spectralis SD-OCT scan lengths obtained with default-K ranged from 5.7 to 7.3 mm, and with mean-K from 5.6 to 7.6 mm. We report a stronger correlation of simulated scan lengths incorporating the subject’s mean-K value (ρ = 0.926, P < 0.0005) compared to Spectralis default settings (ρ = 0.663, P < 0.0005).
Conclusions
Ocular magnification appears to be better accounted for when individual mean-K values are incorporated into Spectralis SD-OCT scan acquisition versus using the device’s default-K setting. This must be considered when taking area measurements and lateral measurements parallel to the retinal surface
A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks
This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST),
Pakistan, and the Higher Education Commission, Pakistan
The effect of tobacco smoking and treatment strategy on the one-year mortality of patients with acute non-ST-segment elevation myocardial infarction
<p>Abstract</p> <p>Background</p> <p>The aim of the present study was to investigate whether a previously shown survival benefit resulting from routine early invasive management of unselected patients with acute non-ST-segment elevation myocardial infarction (NSTEMI) may differ according to smoking status and age.</p> <p>Methods</p> <p>Post-hoc analysis of a prospective observational cohort study of consecutive patients admitted for NSTEMI in 2003 (conservative strategy cohort [CS]; n = 185) and 2006 (invasive strategy cohort [IS]; n = 200). A strategy for transfer to a high-volume invasive center and routine early invasive management was implemented in 2005. Patients were subdivided into current smokers and non-smokers (including ex-smokers) on admission.</p> <p>Results</p> <p>The one-year mortality rate of smokers was reduced from 37% in the CS to 6% in the IS (p < 0.001), and from 30% to 23% for non-smokers (p = 0.18). Non-smokers were considerably older than smokers (median age 80 vs. 63 years, p < 0.001). The percentage of smokers who underwent revascularization (angioplasty or coronary artery bypass grafting) within 7 days increased from 9% in the CS to 53% in the IS (p < 0.001). The corresponding numbers for non-smokers were 5% and 27% (p < 0.001). There was no interaction between strategy and age (p = 0.25), as opposed to a significant interaction between strategy and smoking status (p = 0.024). Current smoking was an independent predictor of one-year mortality (hazard ratio 2.61, 95% confidence interval 1.43-4.79, p = 0.002).</p> <p>Conclusions</p> <p>The treatment effect of an early invasive strategy in unselected patients with NSTEMI was more pronounced among smokers than non-smokers. The benefit for smokers was not entirely explained by differences in baseline confounders, such as their younger age.</p
Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching
<p>Abstract</p> <p>Background</p> <p>Accurate analysis of CT brain scans is vital for diagnosis and treatment of Traumatic Brain Injuries (TBI). Automatic processing of these CT brain scans could speed up the decision making process, lower the cost of healthcare, and reduce the chance of human error. In this paper, we focus on automatic processing of CT brain images to segment and identify the ventricular systems. The segmentation of ventricles provides quantitative measures on the changes of ventricles in the brain that form vital diagnosis information.</p> <p>Methods</p> <p>First all CT slices are aligned by detecting the ideal midlines in all images. The initial estimation of the ideal midline of the brain is found based on skull symmetry and then the initial estimate is further refined using detected anatomical features. Then a two-step method is used for ventricle segmentation. First a low-level segmentation on each pixel is applied on the CT images. For this step, both Iterated Conditional Mode (ICM) and Maximum A Posteriori Spatial Probability (MASP) are evaluated and compared. The second step applies template matching algorithm to identify objects in the initial low-level segmentation as ventricles. Experiments for ventricle segmentation are conducted using a relatively large CT dataset containing mild and severe TBI cases.</p> <p>Results</p> <p>Experiments show that the acceptable rate of the ideal midline detection is over 95%. Two measurements are defined to evaluate ventricle recognition results. The first measure is a sensitivity-like measure and the second is a false positive-like measure. For the first measurement, the rate is 100% indicating that all ventricles are identified in all slices. The false positives-like measurement is 8.59%. We also point out the similarities and differences between ICM and MASP algorithms through both mathematically relationships and segmentation results on CT images.</p> <p>Conclusion</p> <p>The experiments show the reliability of the proposed algorithms. The novelty of the proposed method lies in its incorporation of anatomical features for ideal midline detection and the two-step ventricle segmentation method. Our method offers the following improvements over existing approaches: accurate detection of the ideal midline and accurate recognition of ventricles using both anatomical features and spatial templates derived from Magnetic Resonance Images.</p
Emerging strengths in Asia Pacific bioinformatics
The 2008 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation set up in 1998, was organized as the 7th International Conference on Bioinformatics (InCoB), jointly with the Bioinformatics and Systems Biology in Taiwan (BIT 2008) Conference, Oct. 20–23, 2008 at Taipei, Taiwan. Besides bringing together scientists from the field of bioinformatics in this region, InCoB is actively involving researchers from the area of systems biology, to facilitate greater synergy between these two groups. Marking the 10th Anniversary of APBioNet, this InCoB 2008 meeting followed on from a series of successful annual events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea), New Delhi (India) and Hong Kong. Additionally, tutorials and the Workshop on Education in Bioinformatics and Computational Biology (WEBCB) immediately prior to the 20th Federation of Asian and Oceanian Biochemists and Molecular Biologists (FAOBMB) Taipei Conference provided ample opportunity for inducting mainstream biochemists and molecular biologists from the region into a greater level of awareness of the importance of bioinformatics in their craft. In this editorial, we provide a brief overview of the peer-reviewed manuscripts accepted for publication herein, grouped into thematic areas. As the regional research expertise in bioinformatics matures, the papers fall into thematic areas, illustrating the specific contributions made by APBioNet to global bioinformatics efforts
Characteristics of Patients Who Survived < 3 Months or > 2 Years After Surgery for Spinal Metastases: Can We Avoid Inappropriate Patient Selection?
PURPOSE: Survival after metastatic cancer has improved at the cost of increased presentation with metastatic spinal disease. For patients with pathologic spinal fractures and/or spinal cord compression, surgical intervention may relieve pain and improve quality of life. Surgery is generally considered to be inappropriate if anticipated survival is < 3 months. The aim of this international multicenter study was to analyze data from patients who died within 3 months or 2 years after surgery, to identify preoperative factors associated with poor or good survival, and to avoid inappropriate selection of patients for surgery in the future.
PATIENTS AND METHODS: A total of 1,266 patients underwent surgery for impending pathologic fractures and/or neurologic deficits and were prospectively observed. Data collected included tumor characteristics, preoperative fitness (American Society of Anesthesiologists advisory [ASA]), neurologic status (Frankel scale), performance (Karnofsky performance score [KPS]), and quality of life (EuroQol five-dimensions questionnaire [EQ-5D]). Outcomes were survival at 3 months and 2 years postsurgery. Univariable and multivariable logistic regression analyses were used to find preoperative factors associated with short-term and long-term survival.
RESULTS: In univariable analysis, age, emergency surgery, KPS, EQ-5D, ASA, Frankel, and Tokuhashi/Tomita scores were significantly associated with short survival. In multivariable analysis, KPS and age were significantly associated with short survival (odds ratio [OR], 1.36; 95% CI, 1.15 to 1.62; and OR, 1.14; 95% CI, 1.02 to 1.27, respectively). Associated with longer survival in univariable analysis were age, number of levels included in surgery, KPS, EQ-5D, Frankel, and Tokuhashi/Tomita scores. In multivariable analysis, the number of levels included in surgery (OR, 1.21; 95% CI, 1.06 to 1.38) and primary tumor type were significantly associated with longer survival.
CONCLUSION: Poor performance status at presentation is the strongest indicator of poor short-term survival, whereas low disease load and favorable tumor histology are associated with longer-term survival
- …