30 research outputs found
Increasing numbers of acute hepatitis C infections in HIV-infected MSM and high reinfection rates following SVR
Efficacy and tolerability of darunavir/r 600/100 mg bid in treatment-experienced patients: 48-week data from a German outpatient cohort
Analysis and computer program for rupture-risk prediction of abdominal aortic aneurysms
BACKGROUND: Ruptured abdominal aortic aneurysms (AAAs) are the 13(th )leading cause of death in the United States. While AAA rupture may occur without significant warning, its risk assessment is generally based on critical values of the maximum AAA diameter (>5 cm) and AAA-growth rate (>0.5 cm/year). These criteria may be insufficient for reliable AAA-rupture risk assessment especially when predicting possible rupture of smaller AAAs. METHODS: Based on clinical evidence, eight biomechanical factors with associated weighting coefficients were determined and summed up in terms of a dimensionless, time-dependent severity parameter, SP(t). The most important factor is the maximum wall stress for which a semi-empirical correlation has been developed. RESULTS: The patient-specific SP(t) indicates the risk level of AAA rupture and provides a threshold value when surgical intervention becomes necessary. The severity parameter was validated with four clinical cases and its application is demonstrated for two AAA cases. CONCLUSION: As part of computational AAA-risk assessment and medical management, a patient-specific severity parameter 0 < SP(t) < 1.0 has been developed. The time-dependent, normalized SP(t) depends on eight biomechanical factors, to be obtained via a patient's pressure and AAA-geometry measurements. The resulting program is an easy-to-use tool which allows medical practitioners to make scientific diagnoses, which may save lives and should lead to an improved quality of life
The acceptance and use of a virtual learning environment in higher education: an empirical study in Turkey, and the UK
Deep-Sea Nematodes Actively Colonise Sediments, Irrespective of the Presence of a Pulse of Organic Matter: Results from an In-Situ Experiment
A colonisation experiment was performed in situ at 2500 m water depth at the
Arctic deep-sea long-term observatory HAUSGARTEN to determine the response of
deep-sea nematodes to disturbed, newly available patches, enriched with organic
matter. Cylindrical tubes,laterally covered with a 500 µm mesh, were
filled with azoic deep-sea sediment and 13C-labelled food sources
(diatoms and bacteria). After 10 days of incubation the tubes were analysed for
nematode response in terms of colonisation and uptake. Nematodes actively
colonised the tubes,however with densities that only accounted for a maximum of
2.13% (51 ind.10 cm−2) of the ambient nematode
assemblages. Densities did not differ according to the presence or absence of
organic matter, nor according to the type of organic matter added. The fact that
the organic matter did not function as an attractant to nematodes was confirmed
by the absence of notable 13C assimilation by the colonising
nematodes. Overall, colonisationappears to be a process that yields reproducible
abundance and diversity patterns, with certain taxa showing more efficiency.
Together with the high variability between the colonising nematode assemblages,
this lends experimental support to the existence of a spatio-temporal mosaic
that emerges from highly localised, partially stochastic community dynamics
