3,300 research outputs found

    Weight loss maintenance: An agenda for health psychology

    Get PDF
    This is the peer reviewed version of the editorial, which has been published in final form at doi:10.1111/bjhp.12107. This editorial may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for self-archiving.n/a (Editorial)NIHR'Fuse' (British Heart Foundation, Cancer Research UK, ESRC, MRC

    Spatial variations in snowpack chemistry, isotopic composition of NO3− and nitrogen deposition from the ice sheet margin to the coast of western Greenland

    Get PDF
    The relative roles of anthropogenic nitrogen (N) deposition and climate change in causing ecological change in remote Arctic ecosystems, especially lakes, have been the subject of debate over the last decade. Some palaeoecological studies have cited isotopic signals (δ(15N)) preserved in lake sediments as evidence linking N deposition with ecological change, but a key limitation has been the lack of co-located data on both deposition input fluxes and isotopic composition of deposited nitrate (NO3−). In Arctic lakes, including those in western Greenland, previous palaeolimnological studies have indicated a spatial variation in δ(15N) trends in lake sediments but data are lacking for deposition chemistry, input fluxes and stable isotope composition of NO3−. In the present study, snowpack chemistry, NO3− stable isotopes and net deposition fluxes for the largest ice-free region in Greenland were investigated to determine whether there are spatial gradients from the ice sheet margin to the coast linked to a gradient in precipitation. Late-season snowpack was sampled in March 2011 at eight locations within three lake catchments in each of three regions (ice sheet margin in the east, the central area near Kelly Ville and the coastal zone to the west). At the coast, snowpack accumulation averaged 181 mm snow water equivalent (SWE) compared with 36 mm SWE by the ice sheet. Coastal snowpack showed significantly greater concentrations of marine salts (Na+, Cl−, other major cations), ammonium (NH4+; regional means 1.4–2.7 µmol L−1), total and non-sea-salt sulfate (SO42−; total 1.8–7.7, non-sea-salt 1.0–1.8 µmol L−1) than the two inland regions. Nitrate (1.5–2.4 µmol L−1) showed significantly lower concentrations at the coast. Despite lower concentrations, higher precipitation at the coast results in greater net deposition for NO3− as well as NH4+ and non-sea-salt sulfate (nss-SO42−) relative to the inland regions (lowest at Kelly Ville 6, 4 and 3; highest at coast 9, 17 and 11 mol ha−1 a−1 of NO3−, NH4+ and nss-SO42− respectively). The δ(15N) of snowpack NO3− shows a significant decrease from inland regions (−5.7 ‰ at Kelly Ville) to the coast (−11.3 ‰). We attribute the spatial patterns of δ(15N) in western Greenland to post-depositional processing rather than differing sources because of (1) spatial relationships with precipitation and sublimation, (2) within-catchment isotopic differences between terrestrial snowpack and lake ice snowpack, and (3) similarities between fresh snow (rather than accumulated snowpack) at Kelly Ville and the coast. Hence the δ(15N) of coastal snowpack is most representative of snowfall in western Greenland, but after deposition the effects of photolysis, volatilization and sublimation lead to enrichment of the remaining snowpack with the greatest effect in inland areas of low precipitation and high sublimation losses

    First birth following spindle transfer for mitochondrial replacement therapy: hope and trepidation

    Get PDF
    In this issue, Zhang et al. (2017) report the birth of a healthy boy after mitochondrial replacement therapy (MRT) by spindle transfer to prevent transmission of mitochondrial disease from mother to child. The case was first publicized in the lay press (Hamzelou, 2016; see also editorial by Johnson, 2016) and then presented during the 2016 Annual Meeting of the American Society for Assisted Reproduction (ASRM) in October 2016 (Zhang et al., 2016a). It followed an earlier report of an unsuccessful attempt at MRT by pronuclear transfer by the same group (Zhang et al., 2016b). This world-first birth represents an achievement and a steppingstone, and it has played a role in encouraging the Human Fertilization and Embryology Authority (HFEA) in the UK to issue a final recommendation that the technique ‘be approved for cautious use in specific circumstances’. (http://www.hfea.gov.uk/10559.html) We, the editors, were unanimous in deciding that this paper should be published in RBMO, based on our conviction that the scientific community must be informed of the details of the work in full in order to evaluate it critically and discuss it openly. We decided this despite the fact that the work has weaknesses and limitations in a number of areas. Moreover, although we were able to encourage the authors to include more details of their work in the submission, some uncertainties concerning methodologies and results still remain. Here we outline our concerns regarding the approach and the treatment process described by Zhang and colleagues

    Squirrelpox virus: assessing prevalence, transmission and environmental degradation

    Get PDF
    Red squirrels (Sciurus vulgaris) declined in Great Britain and Ireland during the last century, due to habitat loss and the introduction of grey squirrels (Sciurus carolinensis), which competitively exclude the red squirrel and act as a reservoir for squirrelpox virus (SQPV). The disease is generally fatal to red squirrels and their ecological replacement by grey squirrels is up to 25 times faster where the virus is present. We aimed to determine: (1) the seropositivity and prevalence of SQPV DNA in the invasive and native species at a regional scale; (2) possible SQPV transmission routes; and, (3) virus degradation rates under differing environmental conditions. Grey (n = 208) and red (n = 40) squirrel blood and tissues were sampled. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) techniques established seropositivity and viral DNA presence, respectively. Overall 8% of squirrels sampled (both species combined) had evidence of SQPV DNA in their tissues and 22% were in possession of antibodies. SQPV prevalence in sampled red squirrels was 2.5%. Viral loads were typically low in grey squirrels by comparison to red squirrels. There was a trend for a greater number of positive samples in spring and summer than in winter. Possible transmission routes were identified through the presence of viral DNA in faeces (red squirrels only), urine and ectoparasites (both species). Virus degradation analyses suggested that, after 30 days of exposure to six combinations of environments, there were more intact virus particles in scabs kept in warm (25°C) and dry conditions than in cooler (5 and 15°C) or wet conditions. We conclude that SQPV is present at low prevalence in invasive grey squirrel populations with a lower prevalence in native red squirrels. Virus transmission could occur through urine especially during warm dry summer conditions but, more notably, via ectoparasites, which are shared by both species

    Exponential Random Graph Modeling for Complex Brain Networks

    Get PDF
    Exponential random graph models (ERGMs), also known as p* models, have been utilized extensively in the social science literature to study complex networks and how their global structure depends on underlying structural components. However, the literature on their use in biological networks (especially brain networks) has remained sparse. Descriptive models based on a specific feature of the graph (clustering coefficient, degree distribution, etc.) have dominated connectivity research in neuroscience. Corresponding generative models have been developed to reproduce one of these features. However, the complexity inherent in whole-brain network data necessitates the development and use of tools that allow the systematic exploration of several features simultaneously and how they interact to form the global network architecture. ERGMs provide a statistically principled approach to the assessment of how a set of interacting local brain network features gives rise to the global structure. We illustrate the utility of ERGMs for modeling, analyzing, and simulating complex whole-brain networks with network data from normal subjects. We also provide a foundation for the selection of important local features through the implementation and assessment of three selection approaches: a traditional p-value based backward selection approach, an information criterion approach (AIC), and a graphical goodness of fit (GOF) approach. The graphical GOF approach serves as the best method given the scientific interest in being able to capture and reproduce the structure of fitted brain networks

    Impaired development of the cerebral cortex in infants with congenital heart disease is correlated to reduced cerebral oxygen delivery

    Get PDF
    Neurodevelopmental impairment is the most common comorbidity associated with complex congenital heart disease (CHD), while the underlying biological mechanism remains unclear. We hypothesised that impaired cerebral oxygen delivery in infants with CHD is a cause of impaired cortical development, and predicted that cardiac lesions most associated with reduced cerebral oxygen delivery would demonstrate the greatest impairment of cortical development. We compared 30 newborns with complex CHD prior to surgery and 30 age-matched healthy controls using brain MRI. The cortex was assessed using high resolution, motion-corrected T2-weighted images in natural sleep, analysed using an automated pipeline. Cerebral oxygen delivery was calculated using phase contrast angiography and pre-ductal pulse oximetry, while regional cerebral oxygen saturation was estimated using near-infrared spectroscopy. We found that impaired cortical grey matter volume and gyrification index in newborns with complex CHD was linearly related to reduced cerebral oxygen delivery, and that cardiac lesions associated with the lowest cerebral oxygen delivery were associated with the greatest impairment of cortical development. These findings suggest that strategies to improve cerebral oxygen delivery may help reduce brain dysmaturation in newborns with CHD, and may be most relevant for children with CHD whose cardiac defects remain unrepaired for prolonged periods after birth

    Compensatory ingestion upon dietary restriction in Drosophila melanogaster

    Get PDF
    Dietary restriction extends the lifespan of numerous, evolutionarily diverse species. In D. melanogaster, a prominent model for research on the interaction between nutrition and longevity, dietary restriction is typically based on medium dilution, with possible compensatory ingestion commonly being neglected. Possible problems with this approach are revealed by using a method for direct monitoring of D. melanogaster feeding behavior. This demonstrates that dietary restriction elicits robust compensatory changes in food consumption. As a result, the effect of medium dilution is overestimated and, in certain cases, even fully compensated for. Our results strongly indicate that feeding behavior and nutritional composition act concertedly to determine fly lifespan. Feeding behavior thus emerges as a central element in D. melanogaster aging

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    Discussion of "Sequential Quasi-Monte Carlo" by Mathieu Gerber and Nicolas Chopin

    Get PDF
    A discussion on the possibility of reducing the variance of quasi-Monte Carlo estimators in applications. Further details are provided in the accompanying paper "Variance Reduction for Quasi-Monte Carlo"
    corecore