306 research outputs found

    Carbon nanotubes in TiO2 nanofiber photoelectrodes for high-performance perovskite solar cells

    Get PDF
    1D semiconducting oxides are unique structures that have been widely used for photovoltaic (PV) devices due to their capability to provide a direct pathway for charge transport. In addition, carbon nanotubes (CNTs) have played multifunctional roles in a range of PV cells because of their fascinating properties. Herein, the influence of CNTs on the PV performance of 1D titanium dioxide nanofiber (TiO2 NF) photoelectrode perovskite solar cells (PSCs) is systematically explored. Among the different types of CNTs, single‐walled CNTs (SWCNTs) incorporated in the TiO2 NF photoelectrode PSCs show a significant enhancement (≈40%) in the power conversion efficiency (PCE) as compared to control cells. SWCNTs incorporated in TiO2 NFs provide a fast electron transfer within the photoelectrode, resulting in an increase in the short‐circuit current (J sc) value. On the basis of our theoretical calculations, the improved open‐circuit voltage (V oc) of the cells can be attributed to a shift in energy level of the photoelectrodes after the introduction of SWCNTs. Furthermore, it is found that the incorporation of SWCNTs into TiO2 NFs reduces the hysteresis effect and improves the stability of the PSC devices. In this study, the best performing PSC device constructed with SWCNT structures achieves a PCE of 14.03%

    Fast 3D super-resolution ultrasound with adaptive weight-based beamforming

    Get PDF
    Objective: Super-resolution ultrasound (SRUS) imaging through localising and tracking sparse microbubbles has been shown to reveal microvascular structure and flow beyond the wave diffraction limit. Most SRUS studies use standard delay and sum (DAS) beamforming, where high side lobes and broad main lobes make isolation and localisation of densely distributed bubbles challenging, particularly in 3D due to the typically small aperture of matrix array probes. Method: This study aimed to improve 3D SRUS by implementing a new fast 3D coherence beamformer based on channel signal variance. Two additional fast coherence beamformers, that have been implemented in 2D were implemented in 3D for the first time as comparison: a nonlinear beamformer with p-th root compression and a coherence factor beamformer. The 3D coherence beamformers, together with DAS, were compared in computer simulation, on a microflow phantom and in vivo. Results: Simulation results demonstrated that all three adaptive weight-based beamformers can narrow the main lobe suppress the side lobes, while maintaining the weaker scatter signals. Improved 3D SRUS images of microflow phantom and a rabbit kidney within a 3-second acquisition were obtained using the adaptive weight-based beamformers, when compared with DAS. Conclusion: The adaptive weight-based 3D beamformers can improve the SRUS and the proposed variance-based beamformer performs best in simulations and experiments. Significance: Fast 3D SRUS would significantly enhance the potential utility of this emerging imaging modality in a broad range of biomedical applications

    Efficient and Fast Synthesis of Few-Layer Black Phosphorus via Microwave-Assisted Liquid-Phase Exfoliation

    Full text link
    High‐quality, few‐layer black‐phosphorus (BP) flakes are prepared in a common organic solvent with very short processing times using microwave‐assisted liquid‐phase exfoliation. A comprehensive range of analysis, combined with density‐functional theory calculations, confirms that the product prepared using the microwave technique is few‐layer BP with small‐ and large‐area flakes. The suspended exfoliated BP sheets show excellent stability, while samples dispersed onto silicon from the suspensions exhibit low oxidation levels after several days in ambient conditions. This straightforward synthesis method is facile, efficient, and extremely fast, and does not involve use of any surfactant or ultrasonication steps and will facilitate future development of phosphorene research

    Pre-competition habits and injuries in Taekwondo athletes

    Get PDF
    BACKGROUND: Over the past decade, there has been heightened interest in injury rates sustained by martial arts athletes, and more specifically, Taekwondo athletes. Despite this interest, there is a paucity of research on pre-competition habits and training of these athletes. The purpose of this pilot study was to assess training characteristics, competition preparation habits, and injury profiles of Taekwondo athletes. METHODS: A retrospective survey of Canadian male and female Taekwondo athletes competing in a national tournament was conducted. Competitors at a Canadian national level tournament were given a comprehensive survey prior to competition. Items on training characteristics, diet, and injuries sustained during training and competition were included. Questionnaires were distributed to 60 athletes. RESULTS: A response rate of 46.7% was achieved. Of those that responded, 54% dieted prior to competition, and 36% dieted and exercised pre-competition. Sixty-four percent of the athletes practised between 4–6 times per week, with 54% practicing 2 hours per session. Lower limb injuries were the most common (46.5%), followed by upper extremity (18%), back (10%), and head (3.6%). The majority of injuries consisted of sprains/strains (45%), followed by contusions, fractures, and concussions. More injuries occurred during training, including 59% of first injuries. CONCLUSION: More research needs to be conducted to further illustrate the need for appropriate regulations on weight cycling and injury prevention

    Sustainable Polysulfides for Oil Spill Remediation: Repurposing Industrial Waste for Environmental Benefit

    Get PDF
    Crude oil and hydrocarbon fuel spills are a perennial threat to aquatic environments. Inexpensive and sustainable sorbents are needed to mitigate the ecological harm of this pollution. To address this need, this study features a low-density polysulfide polymer that was prepared by the direct reaction of sulfur and used cooking oils. Because both sulfur and cooking oils are hydrophobic, the polymer has an affinity for hydrocarbons such as crude oil and diesel fuel and can rapidly remove them from seawater. Through simple mechanical compression, the oil can be recovered and the polymer can be re-used in oil spill remediation. The polysulfide is unique because it is prepared entirely from re-purposed waste: sulfur is a by-product of the petroleum industry and used cooking oil can be used as a co-monomer. In this way, sulfur waste from the oil industry is used to make an effective sorbent for combatting pollution from that same sector

    Beak and feather disease virus in wild and captive parrots: an analysis of geographic and taxonomic distribution and methodological trends

    Get PDF
    Psittacine beak and feather disease (PBFD) has emerged in recent years as a major threat to wild parrot populations and is an increasing concern to aviculturists and managers of captive populations. Pathological and serological tests for screening for the presence of beak and feather disease virus (BFDV) are a critical component of efforts to manage the disease and of epidemiological studies. Since the disease was first reported in the mid-1970s, screening for BFDV has been conducted in numerous wild and captive populations. However, at present, there is no current and readily accessible synthesis of screening efforts and their results. Here, we consolidate information collected from 83 PBFD- and BFDV-based publications on the primary screening methods being used and identify important knowledge gaps regarding potential global disease hotspots. We present trends in research intensity in this field and critically discuss advances in screening techniques and their applications to both aviculture and to the management of threatened wild populations. Finally, we provide an overview of estimates of BFDV prevalence in captive and wild flocks alongside a complete list of all psittacine species in which the virus has been confirmed. Our evaluation highlights the need for standardised diagnostic tests and more emphasis on studies of wild populations, particularly in view of the intrinsic connection between global trade in companion birds and the spread of novel BFDV strains into wild populations. Increased emphasis should be placed on the screening of captive and wild parrot populations within their countries of origin across the Americas, Africa and Asia

    Luciferase expression allows bioluminescence imaging but imposes limitations on the orthotopic mouse (4T1) model of breast cancer

    Get PDF
    Funding Information: Experiments on the 4T1 and 4Tluc2D6 mouse models of breast cancer were supported by the Russian Scientific Foundation, grant 14-14-00882. MRI measurements were carried out on ClinScan 7T located at Center for Collective Usage (CKP) “Medical nanobiotechologies”, located in Russian National Research Medical University. Experiments on the optimization of protocols for DNA immunization were supported by the Russian Scientific Foundation grant 15-15-30039. Optimization of tumor challenge after DNA immunization was supported by the Russian Fund for Basic Research grant 17-04-00583. Participants were trained in the immunization and tumor challenge experiments in the frame of the European Union Twinning project VACTRAIN, grant agreement #692293, and Swedish Institute PI project 19806/2016. Maria Isaguliants and Stefan Petkov were supported by VACTRAIN, and Maria Isaguliants, also by BALTINFECT, grant agreement #316275. Athina Kilpeläinen was supported by the individual study grant of the Swedish Institute #19061/2014. Patrik Hort is gratefully acknowledged for the language editing. Natalia Belikova is gratefully acknowledged for help with the quantification of protein expression based on the exponential calibration curves. Publisher Copyright: © 2017 Nature Publishing Group. All rights reserved.Implantation of reporter-labeled tumor cells in an immunocompetent host involves a risk of their immune elimination. We have studied this effect in a mouse model of breast cancer after the orthotopic implantation of mammary gland adenocarcinoma 4T1 cells genetically labelled with luciferase (Luc). Mice were implanted with 4T1 cells and two derivative Luc-expressing clones 4T1luc2 and 4T1luc2D6 exhibiting equal in vitro growth rates. In vivo, the daughter 4T1luc2 clone exhibited nearly the same, and 4T1luc2D6, a lower growth rate than the parental cells. The metastatic potential of 4T1 variants was assessed by magnetic resonance, bioluminescent imaging, micro-computed tomography, and densitometry which detected 100-μm metastases in multiple organs and bones at the early stage of their development. After 3-4 weeks, 4T1 generated 11.4 ? 2.1, 4T1luc2D6, 4.5 ? 0.6; and 4T1luc2, 〈1 metastases per mouse, locations restricted to lungs and regional lymph nodes. Mice bearing Luc-expressing tumors developed IFN-? Response to the dominant CTL epitope of Luc. Induced by intradermal DNA-immunization, such response protected mice from the establishment of 4T1luc2-tumors. Our data show that natural or induced cellular response against the reporter restricts growth and metastatic activity of the reporter-labelled tumor cells. Such cells represent a powerful instrument for improving immunization technique for cancer vaccine applications.publishersversionPeer reviewe

    Paradoxical Role of Prion Protein Aggregates in Redox-Iron Induced Toxicity

    Get PDF
    Imbalance of iron homeostasis has been reported in sporadic Creutzfeldt-Jakob-disease (sCJD) affected human and scrapie infected animal brains, but the contribution of this phenotype to disease associated neurotoxicity is unclear.Using cell models of familial prion disorders, we demonstrate that exposure of cells expressing normal prion protein (PrP(C)) or mutant PrP forms to a source of redox-iron induces aggregation of PrP(C) and specific mutant PrP forms. Initially this response is cytoprotective, but becomes increasingly toxic with time due to accumulation of PrP-ferritin aggregates. Mutant PrP forms that do not aggregate are not cytoprotective, and cells show signs of acute toxicity. Intracellular PrP-ferritin aggregates induce the expression of LC3-II, indicating stimulation of autophagy in these cells. Similar observations are noted in sCJD and scrapie infected hamster brains, lending credence to these results. Furthermore, phagocytosis of PrP-ferritin aggregates by astrocytes is cytoprotective, while culture in astrocyte conditioned medium (CM) shows no measurable effect. Exposure to H(2)O(2), on the other hand, does not cause aggregation of PrP, and cells show acute toxicity that is alleviated by CM.These observations suggest that aggregation of PrP in response to redox-iron is cytoprotective. However, subsequent co-aggregation of PrP with ferritin induces intracellular toxicity unless the aggregates are degraded by autophagosomes or phagocytosed by adjacent scavenger cells. H(2)O(2), on the other hand, does not cause aggregation of PrP, and induces toxicity through extra-cellular free radicals. Together with previous observations demonstrating imbalance of iron homeostasis in prion disease affected brains, these observations provide insight into the mechanism of neurotoxicity by redox-iron, and the role of PrP in this process

    Amyloid Plaques Beyond Aβ: A Survey of the Diverse Modulators of Amyloid Aggregation

    Get PDF
    Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer’s disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration
    corecore