178 research outputs found

    Study protocol: a randomised controlled trial investigating the effect of exercise training on peripheral blood gene expression in patients with stable angina

    Get PDF
    Background: Exercise training has been shown to reduce angina and promote collateral vessel development in patients with coronary artery disease. However, the mechanism whereby exercise exerts these beneficial effects is unclear. There has been increasing interest in the use of whole genome peripheral blood gene expression in a wide range of conditions to attempt to identify both novel mechanisms of disease and transcriptional biomarkers. This protocol describes a study in which we will assess the effect of a structured exercise programme on peripheral blood gene expression in patients with stable angina, and correlate this with changes in angina level, anxiety, depression, and exercise capacity. Methods/Design: Sixty patients with stable angina will be recruited and randomised 1: 1 to exercise training or conventional care. Patients randomised to exercise training will attend an exercise physiology laboratory up to three times weekly for supervised aerobic interval training sessions of one hour in total duration. Patients will undergo assessments of angina, anxiety, depression, and peripheral blood gene expression at baseline, after six and twelve weeks of training, and twelve weeks after formal exercise training ceases. Discussion: This study will provide comprehensive data on the effect of exercise training on peripheral blood gene expression in patients with angina. By correlating this with improvement in angina status we will identify candidate peripheral blood transcriptional markers predictive of improvements in angina level in response to exercise training

    A salting out and resin procedure for extracting Schistosoma mansoni DNA from human urine samples

    Get PDF
    Submitted by Nuzia Santos ([email protected]) on 2012-09-27T14:31:36Z No. of bitstreams: 1 36.2010.pdf: 789056 bytes, checksum: 0a4282ac34d4c6aef08223da45e0f126 (MD5)Made available in DSpace on 2012-09-27T14:31:36Z (GMT). No. of bitstreams: 1 36.2010.pdf: 789056 bytes, checksum: 0a4282ac34d4c6aef08223da45e0f126 (MD5) Previous issue date: 2010Fundação Oswaldo Cruz. LaboratĂłrio de Esquistossomose. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. LaboratĂłrio de Imunologia Celular e Molecular. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. LaboratĂłrio de Imunologia Celular e Molecular. Belo Horizonte, MG, Brasil/ Universidade Federal de Ouro Preto. Escola de FarmĂĄcia. LaboratĂłrio de Pesquisas ClĂ­nicas. Ouro Preto, MG, BraziBackground: In this paper a simple and cheap salting out and resin (InstaGene matrixÂź resin - BioRad) DNA extraction method from urine for PCR assays is introduced. The DNA of the fluke Schistosoma mansoni was chosen as the target since schistosomiasis lacks a suitable diagnostic tool which is sensitive enough to detect low worm burden. It is well known that the PCR technique provides high sensitivity and specificity in detecting parasite DNA. Therefore it is of paramount importance to take advantage of its excellent performance by providing a simple to handle and reliable DNA extraction procedure, which permits the diagnosis of the disease in easily obtainable urine samples. Findings: The description of the extraction procedure is given. This extraction procedure was tested for reproducibility and efficiency in artificially contaminated human urine samples. The reproducibility reached 100%, showing positive results in 5 assay repetitions of 5 tested samples each containing 20 ng DNA/5 ml. The efficiency of the extraction procedure was also evaluated in a serial dilution of the original 20 ng DNA/5 ml sample. Detectable DNA was extracted when it was at a concentration of 1.28 pg DNA/mL, revealing the high efficiency of this procedure. Conclusions: This methodology represents a promising tool for schistosomiasis diagnosis utilizing a bio-molecular technique in urine samples which is now ready to be tested under field conditions and may be applicable to the diagnosis of other parasitic disease

    PCR-DGGE assessment of the bacterial diversity of breast milk in women with lactational infectious mastitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infectious mastitis is a common condition during lactation and in fact, represents one of the main causes leading to a precocious weaning. The number of studies dealing with lactational mastitis is low and, up to now, the etiological diagnosis is frequently made on the basis of unspecific clinical signs. The aim of this study was to investigate the microbial diversity of breast milk in 20 women with lactational mastitis employing culture-dependent and culture-independent (PCR-DGGE) approaches.</p> <p>Methods</p> <p>Breast milk samples were cultured in different media to investigate the presence of bacteria and/or yeasts, and a total of 149 representative isolates were identified to the species level by 16S rRNA gene PCR sequencing. The microorganisms recovered were compared with those found by PCR-DGGE analysis. To identify the DGGE profiles two reference markers of different microbial species were constructed. Sequence analysis of unknown bands was also performed.</p> <p>Results</p> <p>Staphylococci were the dominant bacterial group and <it>Staphylococcus epidermidis </it>was the dominant species. In a lower number of samples, other bacteria (mainly streptococci and a few gram-negative species) were also identified. Globally, PCR-DGGE results showed a good correlation with those obtained by culture-based methods. However, although DNA bands corresponding to different lactic acid bacteria were detected, such bacteria could not be isolated from the milk samples.</p> <p>Conclusion</p> <p>Staphylococci seem to be the main etiological agents of human lactational mastitis. The combined use of culture and molecular techniques allowed a better characterization of the bacterial diversity in milk from women suffering from infectious mastitis. Our results suggest that this condition could be the result of a disbiotic process where some of the bacterial species usually present in human milk outgrow (staphylococci) while others disappear (lactobacilli or lactococci).</p

    SCYX-7158, an Orally-Active Benzoxaborole for the Treatment of Stage 2 Human African Trypanosomiasis

    Get PDF
    Human African trypanosomiasis (HAT) is caused by infection with the parasite Trypanosoma brucei and is an important public health problem in sub-Saharan Africa. New, safe, and effective drugs are urgently needed to treat HAT, particularly stage 2 disease where the parasite infects the brain. Existing therapies for HAT have poor safety profiles, difficult treatment regimens, limited effectiveness, and a high cost of goods. Through an integrated drug discovery project, we have discovered and optimized a novel class of boron-containing small molecules, benzoxaboroles, to deliver SCYX-7158, an orally active preclinical drug candidate. SCYX-7158 cured mice infected with T. brucei, both in the blood and in the brain. Extensive pharmacokinetic characterization of SCYX-7158 in rodents and non-human primates supports the potential of this drug candidate for progression to IND-enabling studies in advance of clinical trials for stage 2 HAT

    Endurance of methanogenic archaea in anaerobic bioreactors treating oleate-based wastewater

    Get PDF
    Methanogenic archaea are reported as very sensitive to lipids and long chain fatty acids (LCFA). Therefore, in conventional anaerobic processes, methane recovery during LCFA-rich wastewater treatment is usually low. By applying a start-up strategy, based on a sequence of step feeding and reaction cycles, an oleate-rich wastewater was efficiently treated at an organic loading rate of 21 kg COD m(-3) day(-1) (50 % as oleate), showing a methane recovery of 72 %. In the present work, the archaeal community developed in that reactor is investigated using a 16S rRNA gene approach. This is the first time that methanogens present in a bioreactor converting efficiently high loads of LCFA to methane are monitored. Denaturing gradient gel electrophoresis profiling showed that major changes on the archaeal community took place during the bioreactor start-up, where phases of continuous feeding were alternated with batch phases. After the start-up, a stable archaeal community (similarity higher than 84 %) was observed and maintained throughout the continuous operation. This community exhibited high LCFA tolerance and high acetoclastic and hydrogenotrophic activity. Cloning and sequencing results showed that Methanobacterium- and Methanosaeta-like microorganisms prevailed in the system and were able to tolerate and endure during prolonged exposure to high LCFA loads, despite the previously reported LCFA sensitivity of methanogens.This study has been financially supported by FEDER funds through the Operational Competitiveness Programme (COMPETE) and by national funds through the Portuguese Foundation for Science and Technology (FCT) in the frame of the projects FCOMP-01-0124-FEDER-007087 and FCOMP-01-0124-FEDER-014784. Financial support from FCT and the European Social Fund (ESF) through PhD grants SFRH/BD/48960/2008 and SFRH/BD/24256/2005 attributed to Andreia Salvador and Ana Julia Cavaleiro is also acknowledged

    Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria

    Get PDF
    The online version of this article (doi:10.1007/s00253-017-8212-x) contains supplementary material, which is available to authorized users.The surfactant sodium lauryl ether sulfate (SLES) is widely used in the composition of detergents and frequently ends up in wastewater treatment plants (WWTPs). While aerobic SLES degradation is well studied, little is known about the fate of this compound in anoxic environments, such as denitrification tanks of WWTPs, nor about the bacteria involved in the anoxic biodegradation. Here, we used SLES as sole carbon and energy source, at concentrations ranging from 50 to 1000 mg L1, to enrich and isolate nitrate-reducing bacteria from activated sludge of a WWTP with the anaerobic-anoxic-oxic (A2/O) concept. In the 50 mg L1 enrichment, Comamonas (50%), Pseudomonas (24%), and Alicycliphilus (12%) were present at higher relative abundance, while Pseudomonas (53%) became dominant in the 1000 mg L1 enrichment. Aeromonas hydrophila strain S7, Pseudomonas stutzeri strain S8, and Pseudomonas nitroreducens strain S11 were isolated from the enriched cultures. Under denitrifying conditions, strains S8 and S11 degraded 500 mg L1 SLES in less than 1 day, while strain S7 required more than 6 days. Strains S8 and S11 also showed a remarkable resistance to SLES, being able to grow and reduce nitrate with SLES concentrations up to 40 g L1. Strain S11 turned out to be the best anoxic SLES degrader, degrading up to 41% of 500 mg L1. The comparison between SLES anoxic and oxic degradation by strain S11 revealed differences in SLES cleavage, degradation, and sulfate accumulation; both ester and ether cleavage were probably employed in SLES anoxic degradation by strain S11.This research was supported by the Spanish Ministry of Education and Science (contract project CTQ2007-64324 and 447 CONSOLIDER-CSD 2007-00055). The Regional Government of Castilla y Leon (Ref. GR76) is also gratefully acknowledged. MRD is supported by the WIMEK graduate school (project BAdaptive capacity and functionality of multi-trophic aquatic ecosystems^). AJMS is supported by the Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO). AJMS and AJC are supported by an European ResearchCouncil (ERC) Grant (Project 323009).Thisstudywassupported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. This study was alsosupportedbythePortugueseFoundationforScienceandTechnology (FCT) under the scope of the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462). Joana Alves from University of Minho (Portugal) is acknowledged for support with the molecular techniques.info:eu-repo/semantics/publishedVersio

    DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence.</p> <p>Methods</p> <p>A set of 4 genes, including <it>CDH1 </it>(E-cadherin), <it>SFN </it>(stratifin), <it>RARB </it>(retinoic acid receptor, beta) and <it>RASSF1A </it>(Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters.</p> <p>Results</p> <p><it>CDH1 </it>and <it>SFN </it>genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between <it>RARB </it>and <it>RASSF1A </it>methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for <it>RARB </it>methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for <it>RASSF1A </it>gene, respectively, in relation to the control group.</p> <p>Conclusion</p> <p>Indistinct DNA hypermethylation of <it>CDH1 </it>and <it>SFN </it>genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, <it>RARB </it>and <it>RASSF1A </it>gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of differentially methylated genes in this neoplasia in order to maximize the diagnostic coverage of epigenetic markers, especially in studies aiming at early recurrence detection.</p

    Fine mapping of qSTV11KAS, a major QTL for rice stripe disease resistance

    Get PDF
    Rice stripe disease, caused by rice stripe virus (RSV), is one of the most serious diseases in temperate rice-growing areas. In the present study, we performed quantitative trait locus (QTL) analysis for RSV resistance using 98 backcross inbred lines derived from the cross between the highly resistant variety, Kasalath, and the highly susceptible variety, Nipponbare. Under artificial inoculation in the greenhouse, two QTLs for RSV resistance, designated qSTV7 and qSTV11KAS, were detected on chromosomes 7 and 11 respectively, whereas only one QTL was detected in the same location of chromosome 11 under natural inoculation in the field. The stability of qSTV11KAS was validated using 39 established chromosome segment substitution lines. Fine mapping of qSTV11KAS was carried out using 372 BC3F2:3 recombinants and 399 BC3F3:4 lines selected from 7,018 BC3F2 plants of the cross SL-234/Koshihikari. The qSTV11KAS was localized to a 39.2 kb region containing seven annotated genes. The most likely candidate gene, LOC_Os11g30910, is predicted to encode a sulfotransferase domain-containing protein. The predicted protein encoded by the Kasalath allele differs from Nipponbare by a single amino acid substitution and the deletion of two amino acids within the sulfotransferase domain. Marker-resistance association analysis revealed that the markers L104-155 bp and R48-194 bp were highly correlated with RSV resistance in the 148 landrace varieties. These results provide a basis for the cloning of qSTV11KAS, and the markers may be used for molecular breeding of RSV resistant rice varieties
    • 

    corecore