2,407 research outputs found

    A Reo model of Software Defined Networks

    Get PDF
    Reo is a compositional coordination language for component connectors with a formal semantics based on automata. In this paper, we propose a formal model of software defined networks (SDNs) based on Reo where declarative constructs comprising of basic Reo primitives compose to specify descriptive models of both data and control planes of SDNs. We first describe the model of an SDN switch which can be compactly represented as a single state constraint automaton with a memory storing its flow table. A full network can then be compositionally constructed by composing the switches with basic communication channels. The reactive and proactive behaviour of the controllers in the control plane of an SDN can also be modelled by Reo connectors, which can compose the connectors representing data plane. The resulting model is suitable for testing, simulation, visualization, verification, and ultimately compilation into SDN switch code using the standard tools already available for Reo

    Risk factors for race-day fatality in flat racing Thoroughbreds in Great Britain (2000 to 2013)

    Get PDF
    A key focus of the racing industry is to reduce the number of race-day events where horses die suddenly or are euthanased due to catastrophic injury. The objective of this study was therefore to determine risk factors for race-day fatalities in Thoroughbred racehorses, using a cohort of all horses participating in flat racing in Great Britain between 2000 and 2013. Horse-, race- and course-level data were collected and combined with all race-day fatalities, recorded by racecourse veterinarians in a central database. Associations between exposure variables and fatality were assessed using logistic regression analyses for (1) all starts in the dataset and (2) starts made on turf surfaces only. There were 806,764 starts in total, of which 548,571 were on turf surfaces. A total of 610 fatalities were recorded; 377 (61.8%) on turf. In both regression models, increased firmness of the going, increasing racing distance, increasing average horse performance, first year of racing and wearing eye cover for the first time all increased the odds of fatality. Generally, the odds of fatality also increased with increasing horse age whereas increasing number of previous starts reduced fatality odds. In the ‘all starts’ model, horses racing in an auction race were at 1.46 (95% confidence interval (CI) 1.06–2.01) times the odds of fatality compared with horses not racing in this race type. In the turf starts model, horses racing in Group 1 races were at 3.19 (95% CI 1.71–5.93) times the odds of fatality compared with horses not racing in this race type. Identification of novel risk factors including wearing eye cover and race type will help to inform strategies to further reduce the rate of fatality in flat racing horses, enhancing horse and jockey welfare and safety

    The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster

    Get PDF
    The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity

    The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission

    Get PDF
    1Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito

    Genetic parameters and selection strategies for soybean genotypes resistant to the stink bug-complex

    Get PDF
    Soybean genotypes resistant to stink bugs are derived from complex breeding processes obtained through indirect selection. The aim of the present work was to estimate genetic parameters for guiding selection strategies towards resistant genotypes, based on those traits associated with responses to pod-attacking stink bugs, such as the grain filling period (GFP), leaf retention (LR), percentage index of pod damage (PIPD) and percentage of spotted seeds (PSS). We assessed the parental lines IAC-100 (resistant) and FT-Estrela (susceptible), the progenies F2 and F 4 , 30 progenies F 2:3 , 30 progenies BC 1 F 2:3 and 30 progenies BC 2 F 2:3 , besides the cultivars BRS Celeste and MGBR-46 (Conquista). Three field experiments, using randomized complete block design with three replications, were installed in Goiânia-GO, in the 2002/03 season. Each experiment consisted of 36 treatments (6 common and 30 regular). Heritability estimates were: 74.6 and 36.1 (GFP); 51.9 and 19.9 (LR); 49.6 and 49.6 (PIPD) and 55.8 and 20.3 (PSS), in both the broad and narrow senses, respectively. Based on these results, we concluded that the best strategy for obtaining stink bug-resistant genotypes consists of selecting the PIPD trait in early generations (F 3 or F 4 ), followed by selection for the GFP, LR and PSS traits in generations with higher endogamy levels

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al
    • …
    corecore