118 research outputs found

    Genetic and Evolutionary Analyses of the Human Bone Morphogenetic Protein Receptor 2 (BMPR2) in the Pathophysiology of Obesity

    Get PDF
    Human bone morphogenetic protein receptor 2 (BMPR2) is essential for BMP signalling and may be involved in the regulation of adipogenesis. The BMPR2 locus has been suggested as target of recent selection in human populations. We hypothesized that BMPR2 might have a role in the pathophysiology of obesity.Evolutionary analyses (dN/dS, Fst, iHS) were conducted in vertebrates and human populations. BMPR2 mRNA expression was measured in 190 paired samples of visceral and subcutaneous adipose tissue. The gene was sequenced in 48 DNA samples. Nine representative single nucleotide polymorphisms (SNPs) were genotyped for subsequent association studies on quantitative traits related to obesity in 1830 German Caucasians. An independent cohort of 925 Sorbs was used for replication. Finally, relation of genotypes to mRNA in fat was examined.The evolutionary analyses indicated signatures of selection on the BMPR2 locus. BMPR2 mRNA expression was significantly increased both in visceral and subcutaneous adipose tissue of 37 overweight (BMI>25 and <30 kg/mÂČ) and 80 obese (BMI>30 kg/mÂČ) compared with 44 lean subjects (BMI< 25 kg/mÂČ) (P<0.001). In a case-control study including lean and obese subjects, two intronic SNPs (rs6717924, rs13426118) were associated with obesity (adjusted P<0.05). Combined analyses including the initial cohort and the Sorbs confirmed a consistent effect for rs6717924 (combined P = 0.01) on obesity. Moreover, rs6717924 was associated with higher BMPR2 mRNA expression in visceral adipose tissue.Combined BMPR2 genotype-phenotype-mRNA expression data as well as evolutionary aspects suggest a role of BMPR2 in the pathophysiology of obesity

    Unusually long path length for a nearly scatter-free solar particle event observed by Solar Orbiter at 0.43 au

    Get PDF
    Context: After their acceleration and release at the Sun, solar energetic particles (SEPs) are injected into the interplanetary medium and are bound to the interplanetary magnetic field (IMF) by the Lorentz force. The expansion of the IMF close to the Sun focuses the particle pitch-angle distribution, and scattering counteracts this focusing. Solar Orbiter observed an unusual solar particle event on 9 April 2022 when it was at 0.43 astronomical units (au) from the Sun. // Aims: We show that the inferred IMF along which the SEPs traveled was about three times longer than the nominal length of the Parker spiral and provide an explanation for this apparently long path. // Methods: We used velocity dispersion analysis (VDA) information to infer the spiral length along which the electrons and ions traveled and infer their solar release times and arrival direction. // Results: The path length inferred from VDA is approximately three times longer than the nominal Parker spiral. Nevertheless, the pitch-angle distribution of the particles of this event is highly anisotropic, and the electrons and ions appear to be streaming along the same IMF structures. The angular width of the streaming population is estimated to be approximately 30 degrees. The highly anisotropic ion beam was observed for more than 12 h. This may be due to the low level of fluctuations in the IMF, which in turn is very probably due to this event being inside an interplanetary coronal mass ejection The slow and small rotation in the IMF suggests a flux-rope structure. Small flux dropouts are associated with very small changes in pitch angle, which may be explained by different flux tubes connecting to different locations in the flare region. // Conclusions: The unusually long path length along which the electrons and ions have propagated virtually scatter-free together with the short-term flux dropouts offer excellent opportunities to study the transport of SEPs within interplanetary structures. The 9 April 2022 solar particle event offers an especially rich number of unique observations that can be used to limit SEP transport models

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    An assessment of monitoring requirements and costs of 'Reduced Emissions from Deforestation and Degradation'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Negotiations on a future climate policy framework addressing Reduced Emissions from Deforestation and Degradation (REDD) are ongoing. Regardless of how such a framework will be designed, many technical solutions of estimating forest cover and forest carbon stock change exist to support policy in monitoring and accounting. These technologies typically combine remotely sensed data with ground-based inventories. In this article we assess the costs of monitoring REDD based on available technologies and requirements associated with key elements of REDD policy.</p> <p>Results</p> <p>We find that the design of a REDD policy framework (and specifically its rules) can have a significant impact on monitoring costs. Costs may vary from 0.5 to 550 US$ per square kilometre depending on the required precision of carbon stock and area change detection. Moreover, they follow economies of scale, i.e. single country or project solutions will face relatively higher monitoring costs.</p> <p>Conclusion</p> <p>Although monitoring costs are relatively small compared to other cost items within a REDD system, they should be shared not only among countries but also among sectors, because an integrated monitoring system would have multiple benefits for non-REDD management. Overcoming initialization costs and unequal access to monitoring technologies is crucial for implementation of an integrated monitoring system, and demands for international cooperation.</p

    Memory-Based Mismatch Response to Frequency Changes in Rats

    Get PDF
    Any occasional changes in the acoustic environment are of potential importance for survival. In humans, the preattentive detection of such changes generates the mismatch negativity (MMN) component of event-related brain potentials. MMN is elicited to rare changes (‘deviants’) in a series of otherwise regularly repeating stimuli (‘standards’). Deviant stimuli are detected on the basis of a neural comparison process between the input from the current stimulus and the sensory memory trace of the standard stimuli. It is, however, unclear to what extent animals show a similar comparison process in response to auditory changes. To resolve this issue, epidural potentials were recorded above the primary auditory cortex of urethane-anesthetized rats. In an oddball condition, tone frequency was used to differentiate deviants interspersed randomly among a standard tone. Mismatch responses were observed at 60–100 ms after stimulus onset for frequency increases of 5% and 12.5% but not for similarly descending deviants. The response diminished when the silent inter-stimulus interval was increased from 375 ms to 600 ms for +5% deviants and from 600 ms to 1000 ms for +12.5% deviants. In comparison to the oddball condition the response also diminished in a control condition in which no repetitive standards were presented (equiprobable condition). These findings suggest that the rat mismatch response is similar to the human MMN and indicate that anesthetized rats provide a valuable model for studies of central auditory processing

    Global dataset of soil organic carbon in tidal marshes.

    Get PDF
    Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies
    • 

    corecore