571 research outputs found

    Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects

    Get PDF
    Palaeoenvironmental DNA (PalEnDNA) is defined as ancient DNA (aDNA) originating from disseminated genetic material within palaeoenvironmental samples. Sources of PalEnDNA include marine and lake sediments, peat, loess, till, ice, permafrost, palaeosols, coprolites, preserved gut contents, dental calculus, tephras, and soils as well as deposits in caves/rockshelters and at archaeological sites. PalEnDNA analysis provides a relatively new tool for Quaternary and archaeological sciences and its applications have included palaeoenvironmental and palaeodietary reconstructions, testing hypotheses regarding megafaunal extinctions, human–environment interactions, taxonomic studies and studies of DNA damage. Because PalEnDNA samples comprise markedly different materials, and represent wide-ranging depositional and taphonomic contexts, various issues must be addressed to achieve robust, reproducible findings. Such issues include climatic and temporal limitations, the biological origin and state (free versus bound) of PalEnDNA, stratigraphic reliability, sterile sampling, ability to distinguish modern from aDNA signals, DNA damage and PCR amplification, DNA extraction methods, and taxonomic resolution. In this review, we provide a non-specialist introduction to the use of PalEnDNA for Quaternary and archaeological researchers, assess attributes and limitations of this palaeoenvironmental tool, and discuss future prospects of using PalEnDNA to reconstruct past environments

    An observational study of patient characteristics associated with the mode of admission to acute stroke services in North East, England

    Get PDF
    Objective Effective provision of urgent stroke care relies upon admission to hospital by emergency ambulance and may involve pre-hospital redirection. The proportion and characteristics of patients who do not arrive by emergency ambulance and their impact on service efficiency is unclear. To assist in the planning of regional stroke services we examined the volume, characteristics and prognosis of patients according to the mode of presentation to local services. Study design and setting A prospective regional database of consecutive acute stroke admissions was conducted in North East, England between 01/09/10-30/09/11. Case ascertainment and transport mode were checked against hospital coding and ambulance dispatch databases. Results Twelve acute stroke units contributed data for a mean of 10.7 months. 2792/3131 (89%) patients received a diagnosis of stroke within 24 hours of admission: 2002 arrivals by emergency ambulance; 538 by private transport or non-emergency ambulance; 252 unknown mode. Emergency ambulance patients were older (76 vs 69 years), more likely to be from institutional care (10% vs 1%) and experiencing total anterior circulation symptoms (27% vs 6%). Thrombolysis treatment was commoner following emergency admission (11% vs 4%). However patients attending without emergency ambulance had lower inpatient mortality (2% vs 18%), a lower rate of institutionalisation (1% vs 6%) and less need for daily carers (7% vs 16%). 149/155 (96%) of highly dependent patients were admitted by emergency ambulance, but none received thrombolysis. Conclusion Presentations of new stroke without emergency ambulance involvement were not unusual but were associated with a better outcome due to younger age, milder neurological impairment and lower levels of pre-stroke dependency. Most patients with a high level of pre-stroke dependency arrived by emergency ambulance but did not receive thrombolysis. It is important to be aware of easily identifiable demographic groups that differ in their potential to gain from different service configurations

    Rapid progression is associated with lymphoid follicle dysfunction in SIV-infected infant rhesus macaques.

    Full text link
    HIV-infected infants are at an increased risk of progressing rapidly to AIDS in the first weeks of life. Here, we evaluated immunological and virological parameters in 25 SIV-infected infant rhesus macaques to understand the factors influencing a rapid disease outcome. Infant macaques were infected with SIVmac251 and monitored for 10 to 17 weeks post-infection. SIV-infected infants were divided into either typical (TypP) or rapid (RP) progressor groups based on levels of plasma anti-SIV antibody and viral load, with RP infants having low SIV-specific antibodies and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype. Interestingly, TypP had lower levels of total CD4 T cells, similar reductions in CD4/CD8 ratios and elevated activation of CD8 T cells, as measured by the levels of HLA-DR, compared to RP. Differences between the two groups were identified in other immune cell populations, including a failure to expand activated memory (CD21-CD27+) B cells in peripheral blood in RP infant macaques, as well as reduced levels of germinal center (GC) B cells and T follicular helper (Tfh) cells in spleens (4- and 10-weeks post-SIV). Reduced B cell proliferation in splenic germinal GCs was associated with increased SIV+ cell density and follicular type 1 interferon (IFN)-induced immune activation. Further analyses determined that at 2-weeks post SIV infection TypP infants exhibited elevated levels of the GC-inducing chemokine CXCL13 in plasma, as well as significantly lower levels of viral envelope diversity compared to RP infants. Our findings provide evidence that early viral and immunologic events following SIV infection contributes to impairment of B cells, Tfh cells and germinal center formation, ultimately impeding the development of SIV-specific antibody responses in rapidly progressing infant macaques

    Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid.

    Get PDF
    Hyperglycaemia as a result of diabetes mellitus or acute illness is associated with increased susceptibility to respiratory infection with Staphylococcus aureus. Hyperglycaemia increases the concentration of glucose in airway surface liquid (ASL) and promotes the growth of S. aureus in vitro and in vivo. Whether elevation of other sugars in the blood, such as fructose, also results in increased concentrations in ASL is unknown and whether sugars in ASL are directly utilised by S. aureus for growth has not been investigated. We obtained mutant S. aureus JE2 strains with transposon disrupted sugar transport genes. NE768(fruA) exhibited restricted growth in 10 mM fructose. In H441 airway epithelial-bacterial co-culture, elevation of basolateral sugar concentration (5-20 mM) increased the apical growth of JE2. However, sugar-induced growth of NE768(fruA) was significantly less when basolateral fructose rather than glucose was elevated. This is the first experimental evidence to show that S. aureus directly utilises sugars present in the ASL for growth. Interestingly, JE2 growth was promoted less by glucose than fructose. Net transepithelial flux of D-glucose was lower than D-fructose. However, uptake of D-glucose was higher than D-fructose across both apical and basolateral membranes consistent with the presence of GLUT1/10 in the airway epithelium. Therefore, we propose that the preferential uptake of glucose (compared to fructose) limits its accumulation in ASL. Pre-treatment with metformin increased transepithelial resistance and reduced the sugar-dependent growth of S. aureus. Thus, epithelial paracellular permeability and glucose transport mechanisms are vital to maintain low glucose concentration in ASL and limit bacterial nutrient sources as a defence against infection

    GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain.

    Get PDF
    Extracellular vesicles (EVs) are biological nanoparticles with important roles in intercellular communication, and potential as drug delivery vehicles. Here we demonstrate a role for the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in EV assembly and secretion. We observe high levels of GAPDH binding to the outer surface of EVs via a phosphatidylserine binding motif (G58), which promotes extensive EV clustering. Further studies in a Drosophila EV biogenesis model reveal that GAPDH is required for the normal generation of intraluminal vesicles in endosomal compartments, and promotes vesicle clustering. Fusion of the GAPDH-derived G58 peptide to dsRNA-binding motifs enables highly efficient loading of small interfering RNA (siRNA) onto the EV surface. Such vesicles efficiently deliver siRNA to multiple anatomical regions of the brain in a Huntington's disease mouse model after systemic injection, resulting in silencing of the huntingtin gene in different regions of the brain

    Raman bands of double-wall carbon nanotubes: comparison with single- and triple-wall carbon nanotubes, and influence of annealing and electron irradiation

    Get PDF
    We compare the G and G2D bands of single-, double- and triple-wall carbon nanotubes (CNTs). We observe that the band shape is sensitive to the number of walls of the CNTs. For single-wall carbon nanotubes (SWCNTs), the G band is composed of two distinct contributions G+ and G-, while the G band for double-wall nanotubes is composed of one band with two main contributions from the inner and the outer tube. The G2D band can be fitted with one Lorentzian for single-wall tubes, while two distinct contributions are observed for double-wall carbon nanotubes (DWCNTs). Considerable variations of the G2D band are found with similar first order Raman spectra. Annealing influences the D- and RBM-band intensities. Electron irradiation has the effect of decreasing the G- and D-band wavenumbers but does not enhance the D-band intensity considerably. The down-shifts of the G- and D-band wavenumbers are correlated and are the same for two excitation wavelengths. This is consistent with the scattering of phonons around the K-point

    A longitudinal study of risk factors for the occurrence, duration and severity of menstrual cramps in a cohort of college women

    Full text link
    To describe how menstrual cramps vary from cycle to cycle within a woman over time. To examine the influence of weight and lifestyle factors on occurrence, duration, and severity of menstrual pain. Design A one-year prospective menstrual diary study. Participants One hundred and sixty-five women aged 17 to 19 years entering a local university in 1985. Main outcome measures The occurrence, length, and maximum severity of pain during a menstrual period. Results Menstrual pain occurred during 71.6% of observed menstrual bleeds, most commonly beginning the first day of menses. The median duration was two days. Sixty percent of women reported at least one episode of severe pain, while 13% reported severe pain more than half the time. Earlier age at menarche and long menstrual periods increased the occurrence, duration and severity of pain. In smokers, cramps tended to last longer. Being overweight was an important risk factor for menstrual cramps and doubled the odds of having a long pain episode. Frequent alcohol consumption decreased the probability of having menstrual cramps, but in women who had pain it increased duration and severity. Physical activity was not associated with any pain parameter. Conclusions Women who have pain lasting three days are an important target group for prophylactic therapy. The occurrence and severity of menstrual cramps is influenced by potentially modifiable characteristics including weight, smoking, and alcohol consumption. Doctors may wish to counsel women presenting with dysmenorrhoea about the importance of healthy lifestyles and about the inefficacy of alcohol consumption as a treatment for dysmenorrhoea.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73220/1/j.1471-0528.1996.tb09597.x.pd

    Research Recommendations Following the Discovery of Pain Sensitizing IgG Autoantibodies in Fibromyalgia Syndrome

    Get PDF
    BACKGROUND: Fibromyalgia syndrome (FMS) is the most common chronic widespread pain condition in rheumatology. Until recently, no clear pathophysiological mechanism for fibromyalgia had been established, resulting in management challenges. Recent research has indicated that serum IgGs may play a role in FMS. We undertook a research prioritisation exercise to identify the most pertinent research approaches that may lead to clinically implementable outputs. METHODS: Research priority setting was conducted in five phases: situation analysis; design; expert group consultation; interim recommendations; consultation and revision. A dialogue model was used, and an international multi-stakeholder expert group was invited. Clinical, patient, industry, funder, and scientific expertise was represented throughout. Recommendation-consensus was determined via a voluntary closed eSurvey. Reporting guideline for priority setting of health research were employed to support implementation and maximise impact. RESULTS: Arising from the expert group consultation (n = 29 participants), 39 interim recommendations were defined. A response rate of 81.5% was achieved in the consensus survey. Six recommendations were identified as high priority- and 15 as medium level priority. The recommendations range from aspects of fibromyalgia features that should be considered in future autoantibody research, to specific immunological investigations, suggestions for trial design in FMS, and therapeutic interventions that should be assessed in trials. CONCLUSIONS: By applying the principles of strategic priority setting we directed research towards that which is implementable, thereby expediating the benefit to the FMS patient population. These recommendations are intended for patients, international professionals and grant-giving bodies concerned with research into causes and management of patients with fibromyalgia syndrome

    Transplantation tolerance: lessons from experimental rodent models

    Get PDF
    Immunological tolerance or functional unresponsiveness to a transplant is arguably the only approach that is likely to provide long-term graft survival without the problems associated with life-long global immunosuppression. Over the past 50 years, rodent models have become an invaluable tool for elucidating the mechanisms of tolerance to alloantigens. Importantly, rodent models can be adapted to ensure that they reflect more accurately the immune status of human transplant recipients. More recently, the development of genetically modified mice has enabled specific insights into the cellular and molecular mechanisms that play a key role in both the induction and maintenance of tolerance to be obtained and more complex questions to be addressed. This review highlights strategies designed to induce alloantigen specific immunological unresponsiveness leading to transplantation tolerance that have been developed through the use of experimental models
    corecore