195 research outputs found

    Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7.

    Full text link
    ProTx-II is a disulfide-rich peptide toxin from tarantula venom able to inhibit the human voltage-gated sodium channel 1.7 (hNaV1.7), a channel reported to be involved in nociception, and thus it might have potential as a pain therapeutic. ProTx-II acts by binding to the membrane-embedded voltage sensor domain of hNaV1.7, but the precise peptide channel-binding site and the importance of membrane binding on the inhibitory activity of ProTx-II remain unknown. In this study, we examined the structure and membrane-binding properties of ProTx-II and several analogues using NMR spectroscopy, surface plasmon resonance, fluorescence spectroscopy, and molecular dynamics simulations. Our results show a direct correlation between ProTx-II membrane binding affinity and its potency as an hNaV1.7 channel inhibitor. The data support a model whereby a hydrophobic patch on the ProTx-II surface anchors the molecule at the cell surface in a position that optimizes interaction of the peptide with the binding site on the voltage sensor domain. This is the first study to demonstrate that binding of ProTx-II to the lipid membrane is directly linked to its potency as an hNaV1.7 channel inhibitor

    Magnetic resonance imaging for lung cancer detection: Experience in a population of more than 10,000 healthy individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent refinements of lung MRI techniques have reduced the examination time and improved diagnostic sensitivity and specificity. We conducted a study to assess the feasibility of MRI for the detection of primary lung cancer in asymptomatic individuals.</p> <p>Methods</p> <p>A retrospective chart review was performed on images of lung parenchyma, which were extracted from whole-body MRI examinations between October 2000 and December 2007. 11,766 consecutive healthy individuals (mean age, 50.4 years; 56.8% male) were scanned using one of two 1.5-T scanners (Sonata and Sonata Maestro, Siemens Medical Solutions, Erlangen, Germany). The standard protocol included a quick whole-lung survey with T2-weighted 2-dimensional half Fourier acquisition single shot turbo spin echo (HASTE) and 3-dimensional volumetric interpolated breath-hold examination (VIBE). Total examination time was less than 10 minutes, and scanning time was only 5 minutes. Prompt referrals and follow-ups were arranged in cases of suspicious lung nodules.</p> <p>Results</p> <p>A total of 559 individuals (4.8%) had suspicious lung nodules. A total of 49 primary lung cancers were diagnosed in 46 individuals: 41 prevalence cancers and 8 incidence cancers. The overall detection rate of primary lung cancers was 0.4%. For smokers aged 51 to 70 years, the detection rate was 1.4%. TNM stage I disease accounted for 37 (75.5%). The mean size of detected lung cancers was 1.98 cm (median, 1.5 cm; range, 0.5-8.2 cm). The most histological types were adenocarcinoma in 38 (77.6%).</p> <p>Conclusion</p> <p>Rapid zero-dose MRI can be used for lung cancer detection in a healthy population.</p

    Importance of pre-analytical steps for transcriptome and RT-qPCR analyses in the context of the phase II randomised multicentre trial REMAGUS02 of neoadjuvant chemotherapy in breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of predictive markers of response to treatment is a major objective in breast cancer. A major problem in clinical sampling is the variability of RNA templates, requiring accurate management of tumour material and subsequent analyses for future translation in clinical practice. Our aim was to establish the feasibility and reliability of high throughput RNA analysis in a prospective trial.</p> <p>Methods</p> <p>This study was conducted on RNA from initial biopsies, in a prospective trial of neoadjuvant chemotherapy in 327 patients with inoperable breast cancer. Four independent centres included patients and samples. Human U133 GeneChips plus 2.0 arrays for transcriptome analysis and quantitative RT-qPCR of 45 target genes and 6 reference genes were analysed on total RNA.</p> <p>Results</p> <p>Thirty seven samples were excluded because <it>i) </it>they contained less than 30% malignant cells, or <it>ii) </it>they provided RNA Integrity Number (RIN) of poor quality. Among the 290 remaining cases, taking into account strict quality control criteria initially defined to ensure good quality of sampling, 78% and 82% samples were eligible for transcriptome and RT-qPCR analyses, respectively. For RT-qPCR, efficiency was corrected by using standard curves for each gene and each plate. It was greater than 90% for all genes. Clustering analysis highlighted relevant breast cancer phenotypes for both techniques (ER+, PR+, HER2+, triple negative). Interestingly, clustering on trancriptome data also demonstrated a "centre effect", probably due to the sampling or extraction methods used in on of the centres. Conversely, the calibration of RT-qPCR analysis led to the centre effect withdrawing, allowing multicentre analysis of gene transcripts with high accuracy.</p> <p>Conclusions</p> <p>Our data showed that strict quality criteria for RNA integrity assessment and well calibrated and standardized RT-qPCR allows multicentre analysis of genes transcripts with high accuracy in the clinical context. More stringent criteria are needed for transcriptome analysis for clinical applications.</p

    A Cholinergic-Regulated Circuit Coordinates the Maintenance and Bi-Stable States of a Sensory-Motor Behavior during Caenorhabditis elegans Male Copulation

    Get PDF
    Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components

    Fatty Acid Composition of Developing Sea Buckthorn (Hippophae rhamnoides L.) Berry and the Transcriptome of the Mature Seed

    Get PDF
    Background: Sea buckthorn (Hippophae rhamnoides L.) is a hardy, fruit-producing plant known historically for its medicinal and nutraceutical properties. The most recognized product of sea buckthorn is its fruit oil, composed of seed oil that is rich in essential fatty acids, linoleic (18:2\u3c9-6) and \u3b1-linolenic (18:3\u3c9-3) acids, and pulp oil that contains high levels of monounsaturated palmitoleic acid (16:1\u3c9-7). Sea buckthorn is fast gaining popularity as a source of functional food and nutraceuticals, but currently has few genomic resources; therefore, we explored the fatty acid composition of Canadian-grown cultivars (ssp. mongolica) and the sea buckthorn seed transcriptome using the 454 GS FLX sequencing technology. Results: GC-MS profiling of fatty acids in seeds and pulp of berries indicated that the seed oil contained linoleic and \u3b1-linolenic acids at 33-36% and 30-36%, respectively, while the pulp oil contained palmitoleic acid at 32-42%. 454 sequencing of sea buckthorn cDNA collections from mature seeds yielded 500,392 sequence reads, which identified 89,141 putative unigenes represented by 37,482 contigs and 51,659 singletons. Functional annotation by Gene Ontology and computational prediction of metabolic pathways indicated that primary metabolism (protein>nucleic acid>carbohydrate>lipid) and fatty acid and lipid biosynthesis pathways were highly represented categories. Sea buckthorn sequences related to fatty acid biosynthesis genes in Arabidopsis were identified, and a subset of these was examined for transcript expression at four developing stages of the berry. Conclusion: This study provides the first comprehensive genomic resources represented by expressed sequences for sea buckthorn, and demonstrates that the seed oil of Canadian-grown sea buckthorn cultivars contains high levels of linoleic acid and \u3b1-linolenic acid in a close to 1:1 ratio, which is beneficial for human health. These data provide the foundation for further studies on sea buckthorn oil, the enzymes involved in its biosynthesis, and the genes involved in the general hardiness of sea buckthorn against environmental conditions.Peer reviewed: YesNRC publication: Ye

    New live screening of plant-nematode interactions in the rhizosphere

    Get PDF
    Abstract Free living nematodes (FLN) are microscopic worms found in all soils. While many FLN species are beneficial to crops, some species cause significant damage by feeding on roots and vectoring viruses. With the planned legislative removal of traditionally used chemical treatments, identification of new ways to manage FLN populations has become a high priority. For this, more powerful screening systems are required to rapidly assess threats to crops and identify treatments efficiently. Here, we have developed new live assays for testing nematode responses to treatment by combining transparent soil microcosms, a new light sheet imaging technique termed Biospeckle Selective Plane Illumination Microscopy (BSPIM) for fast nematode detection, and Confocal Laser Scanning Microscopy for high resolution imaging. We show that BSPIM increased signal to noise ratios by up to 60 fold and allowed the automatic detection of FLN in transparent soil samples of 1.5 mL. Growing plant root systems were rapidly scanned for nematode abundance and activity, and FLN feeding behaviour and responses to chemical compounds observed in soil-like conditions. This approach could be used for direct monitoring of FLN activity either to develop new compounds that target economically damaging herbivorous nematodes or ensuring that beneficial species are not negatively impacted

    The COGs (context, object, and goals) in multisensory processing

    Get PDF
    Our understanding of how perception operates in real-world environments has been substantially advanced by studying both multisensory processes and “top-down” control processes influencing sensory processing via activity from higher-order brain areas, such as attention, memory, and expectations. As the two topics have been traditionally studied separately, the mechanisms orchestrating real-world multisensory processing remain unclear. Past work has revealed that the observer’s goals gate the influence of many multisensory processes on brain and behavioural responses, whereas some other multisensory processes might occur independently of these goals. Consequently, other forms of top-down control beyond goal dependence are necessary to explain the full range of multisensory effects currently reported at the brain and the cognitive level. These forms of control include sensitivity to stimulus context as well as the detection of matches (or lack thereof) between a multisensory stimulus and categorical attributes of naturalistic objects (e.g. tools, animals). In this review we discuss and integrate the existing findings that demonstrate the importance of such goal-, object- and context-based top-down control over multisensory processing. We then put forward a few principles emerging from this literature review with respect to the mechanisms underlying multisensory processing and discuss their possible broader implications

    An epigenetic clock for gestational age at birth based on blood methylation data

    Get PDF
    corecore