10 research outputs found

    Seismic retrofitting of RC frames with RC infilling

    Get PDF
    The effectiveness of seismic retrofitting of multi-storey multi-bay RC-frame buildings, by converting selected bays into new walls through infilling with RC, was studied experimentally at the ELSA facility at JRC, Ispra, and the results are reported here. The full-scale model tested with the pseudo-dynamic method consisted of two parallel frames, linked through 0.15m slabs, having three bays each (8.5m long), with the central bay (2.5m) infilled with RC wall, and being four storeys tall (12m). The frames were designed and detailed for gravity loads only and are typical of similar frames built in Cyprus in the 1970's. Different connection details and reinforcement percentages for the two infilled frames were used in order to study the effects of these parameters. The results of the pseudo-dynamic and cyclic testing performed are presented and conclusions are drawn

    Evaluation of seismic demand for substandard reinforced concrete structures

    Get PDF
    Background: Reinforced Concrete (RC) buildings with no seismic design exhibit degrading behaviour under severe seismic loading due to non-ductile brittle failure modes. The seismic performance of such substandard structures can be predicted using existing capacity demand diagram methods through the idealization of the non-linear capacity curve of the degrading system, and its comparison with a reduced earthquake demand spectrum. Objective: Modern non-linear static methods for derivation of capacity curves incorporate idealization assumptions that are too simplistic and do not apply for sub-standard buildings. The conventional idealisation procedures cannot maintain the true strength degradation behaviour of such structures in the post-peak part, and thus may lead to significant errors in seismic performance prediction especially in the cases of brittle failure modes dominating the response. Method: In order to increase the accuracy of the prediction, an alternative idealisation procedure using equivalent elastic perfectly plastic systems is proposed herein that can be used in conjunction with any capacity demand diagram method. Results: Moreover, the performance of this improved equivalent linearization procedure in predicting the response of an RC frame is assessed herein. Conclusion: This improved idealization procedure has been proven to reduce the error in the seismic performance prediction as compared to seismic shaking table test results [1] and will be further investigated probabilistically herein

    Mathematical micromodeling of infilled frames:state of the art

    No full text
    The in-plane contribution of infill walls on the structural response of infilled frame structures is an important problem and many research initiatives, via experimental and numerical methods, have been conducted in order to investigate it thoroughly. As a result, the need to consider these research findings on the structural performance has been acknowledged in the latest generation of structural design codes. However, due to the uncertainties concerning the behavior of masonry at the material and structural level, these elements are usually ignored during practical structural analysis and design. They are overtly considered only when there is suspicion that their influence is detrimental to the overall structural response or to the behavior of individual load bearing elements or when it is necessary to justify an improvement in the overall load-carrying capacity or structural performance in general. In this paper, a thorough overview of the different micromodels proposed for the analysis of infilled frames is presented, and the advantages and disadvantages of each micromodel are pointed out (this paper follows our recent review paper on the state-of-the-art of the mathematical macromodeling of infilled frames, thus completing the overview of both macro- and micro- models in the field). Practical recommendations for the implementation of the different models are also presented
    corecore