2,373 research outputs found

    Current and noise correlations in a double dot Cooper pair beam splitter

    Full text link
    We consider a double quantum dot coupled to two normal leads and one superconducting lead, modeling the Cooper pair beam splitter studied in two recent experiments. Starting from a microscopic Hamiltonian we derive a general expression for the branching current and the noise crossed correlations in terms of single and two-particle Green's function of the dot electrons. We then study numerically how these quantities depend on the energy configuration of the dots and the presence of direct tunneling between them, isolating the various processes which come into play. In absence of direct tunneling, the antisymmetric case (the two levels have opposite energies with respect to the superconducting chemical potential) optimizes the Crossed Andreev Reflection (CAR) process while the symmetric case (the two levels have the same energies) favors the Elastic Cotunneling (EC) process. Switching on the direct tunneling tends to suppress the CAR process, leading to negative noise crossed correlations over the whole voltage range for large enough direct tunneling

    Current correlations in the interacting Cooper-pair beam-splitter

    Full text link
    We propose an approach allowing the computation of currents and their correlations in interacting multiterminal mesoscopic systems involving quantum dots coupled to normal and/or superconducting leads. The formalism relies on the expression of branching currents and noise crossed correlations in terms of one- and two-particle Green's functions for the dots electrons, which are then evaluated self-consistently within a conserving approximation. We then apply this to the Cooper-pair beam-splitter setup recently proposed [L. Hofstetter et al. Nature (London) 461 960 (2009); Phys. Rev. Lett. 107 136801 (2011); L. G. Herrmann et al. Phys. Rev. Lett. 104 026801 (2010)], which we model as a double quantum dot with weak interactions, connected to a superconducting lead and two normal ones. Our method not only enables us to take into account a local repulsive interaction on the dots, but also to study its competition with the direct tunneling between dots. Our results suggest that even a weak Coulomb repulsion tends to favor positive current cross correlations in the antisymmetric regime (where the dots have opposite energies with respect to the superconducting chemical potential)

    Gamma-ray burst contributions to constraining the evolution of dark energy

    Full text link
    We explore the gamma-ray bursts' (GRBs') contributions in constraining the dark energy equation of state (EOS) at high (1.8<z<71.8 < z < 7) and at middle redshifts (0.5<z<1.80.5 < z < 1.8) and estimate how many GRBs are needed to get substantial constraints at high redshifts. We estimate the constraints with mock GRBs and mock type Ia supernovae (SNe Ia) for comparisons. When constraining the dark energy EOS in a certain redshift range, we allow the dark energy EOS parameter to vary only in that redshift bin and fix EOS parameters elsewhere to -1. We find that it is difficult to constrain the dark energy EOS beyond the redshifts of SNe Ia with GRBs unless some new luminosity relations for GRBs with smaller scatters are discovered. However, at middle redshifts, GRBs have comparable contributions with SNe Ia in constraining the dark energy EOS.Comment: 3 pages, 5 figures. Published in Astronomy and Astrophysics. Corrected referenc

    Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas

    Full text link
    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose--Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L^3 the sum of the cycle probabilities of length k >> L^2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the \pi_k in the thermodynamic limit. We also determine the function \pi_k for arbitrary systems. Furthermore we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.Comment: 6 pages, extensive rewriting, new section on maximum-length cycle

    Growth and optical properties of GaN/AlN quantum wells

    Full text link
    We demonstrate the growth of GaN/AlN quantum well structures by plasma-assisted molecular-beam epitaxy by taking advantage of the surfactant effect of Ga. The GaN/AlN quantum wells show photoluminescence emission with photon energies in the range between 4.2 and 2.3 eV for well widths between 0.7 and 2.6 nm, respectively. An internal electric field strength of 9.2±1.09.2\pm 1.0 MV/cm is deduced from the dependence of the emission energy on the well width.Comment: Submitted to AP

    Josephson effect through an anisotropic magnetic molecule

    Full text link
    We study the Josephson effect through a magnetic molecule with anisotropic properties. Performing calculations in the tunneling regime, we show that the exchange coupling between the electron spin on the molecule and the molecular spin can trigger a transition from the π\pi state to the 0 state, and we study how the spin anisotropy affects this transition. We show that the behavior of the critical current as a function of an external magnetic field can give access to valuable information about the spin anisotropy of the molecule

    A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach

    Get PDF
    AbstractFraud in the global food supply chain is becoming increasingly common due to the huge profits associated with this type of criminal activity. Food commodities and ingredients that are expensive and are part of complex supply chains are particularly vulnerable. Both herbs and spices fit these criteria perfectly and yet strategies to detect fraudulent adulteration are still far from robust. An FT-IR screening method coupled to data analysis using chemometrics and a second method using LC-HRMS were developed, with the latter detecting commonly used adulterants by biomarker identification. The two tier testing strategy was applied to 78 samples obtained from a variety of retail and on-line sources. There was 100% agreement between the two tests that over 24% of all samples tested had some form of adulterants present. The innovative strategy devised could potentially be used for testing the global supply chains for fraud in many different forms of herbs

    Interventional oncology at the time of COVID-19 pandemic: Problems and solutions.

    Get PDF
    The COVID-19 pandemic has deeply impacted the activity of interventional oncology in hospitals and cancer centers. In this review based on official recommendations of different international societies, but also on local solutions found in different expert large-volume centers, we discuss the changes that need to be done for the organization, safety, and patient management in interventional oncology. A literature review of potential solutions in a context of scarce anesthesiologic resources, limited staff and limited access to hospital beds are proposed and discussed based on the literature data

    Design of a Polarised Positron Source Based on Laser Compton Scattering

    Full text link
    We describe a scheme for producing polarised positrons at the ILC from polarised X-rays created by Compton scattering of a few-GeV electron beam off a CO2 or YAG laser. This scheme is very energy effective using high finesse laser cavities in conjunction with an electron storage ring.Comment: Proposal submitted to the ILC workshop, Snowmass 2005. v2: note number adde

    Gated cardiac CT in infants: What can we expect from deep learning image reconstruction algorithm?

    Get PDF
    ECG-gated cardiac CT is now widely used in infants with congenital heart disease (CHD). Deep Learning Image Reconstruction (DLIR) could improve image quality while minimizing the radiation dose. To define the potential dose reduction using DLIR with an anthropomorphic phantom. An anthropomorphic pediatric phantom was scanned with an ECG-gated cardiac CT at four dose levels. Images were reconstructed with an iterative and a deep-learning reconstruction algorithm (ASIR-V and DLIR). Detectability of high-contrast vessels were computed using a mathematical observer. Discrimination between two vessels was assessed by measuring the CT spatial resolution. The potential dose reduction while keeping a similar level of image quality was assessed. DLIR-H enhances detectability by 2.4% and discrimination performances by 20.9% in comparison with ASIR-V 50. To maintain a similar level of detection, the dose could be reduced by 64% using high-strength DLIR in comparison with ASIR-V50. DLIR offers the potential for a substantial dose reduction while preserving image quality compared to ASIR-V
    corecore