
Journal of Cardiovascular Computed Tomography 18 (2024) 304–306
Contents lists available at ScienceDirect

Journal of Cardiovascular Computed Tomography

journal homepage: www.JournalofCardiovascularCT.com
Technical report
Gated cardiac CT in infants: What can we expect from deep learning image
reconstruction algorithm?

Marianna Gulizia a,*, Leonor Alamo a, Yasser Alem�an-G�omez a, Tyna Cherpillod a,
Katerina Mandralis a, Christine Chevallier a, Estelle Tenisch a,1, Anaïs Viry b,1

a Department of Radiology and Interventional Radiology, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland
b Institute of Radiation Physics, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue du Grand Pr�e 1, 1007 Lausanne, Switzerland
A R T I C L E I N F O

Keywords:
CT
Pediatric
Congenital heart disease
DLIR
Phantom
Optimization
Abbreviations: ASIR-V, Adaptive Statistical Iterat
Reconstruction; ECG, Electrocardiography; HU, H
Function.
* Corresponding author.
E-mail addresses: marianna.gulizia@chuv.ch (

cherpillod@chuv.ch (T. Cherpillod), katerina.m
(E. Tenisch), anais.viry@chuv.ch (A. Viry).
1 Co-last author, both authors contributes equally

https://doi.org/10.1016/j.jcct.2024.03.001
Received 25 November 2023; Received in revised f
Available online 12 March 2024
1934-5925/© 2024 The Authors. Published by Elsev
BY license (http://creativecommons.org/licenses/b
A B S T R A C T

Background: ECG-gated cardiac CT is now widely used in infants with congenital heart disease (CHD). Deep
Learning Image Reconstruction (DLIR) could improve image quality while minimizing the radiation dose.
Objectives: To define the potential dose reduction using DLIR with an anthropomorphic phantom.
Method: An anthropomorphic pediatric phantom was scanned with an ECG-gated cardiac CT at four dose levels.
Images were reconstructed with an iterative and a deep-learning reconstruction algorithm (ASIR-V and DLIR).
Detectability of high-contrast vessels were computed using a mathematical observer. Discrimination between two
vessels was assessed by measuring the CT spatial resolution. The potential dose reduction while keeping a similar
level of image quality was assessed.
Results: DLIR-H enhances detectability by 2.4% and discrimination performances by 20.9% in comparison with
ASIR-V 50. To maintain a similar level of detection, the dose could be reduced by 64% using high-strength DLIR in
comparison with ASIR-V50.
Conclusion: DLIR offers the potential for a substantial dose reduction while preserving image quality compared to
ASIR-V.
1. Introduction

Millions of babies are born with a congenital heart disease (CHD)
every year.1 An accurate diagnosis of CHD before surgical correction is
crucial. ECG-gated cardiac CT remains the standard imaging method due
to its high spatial and temporal resolution.2 CT provides good image
quality in a short acquisition time, reducing the need for sedation.
Furthermore, the three-dimensional volumetric datasets available with
CT are useful for pre-operative evaluation of anatomical structures.3

Recently, reconstruction algorithms based on artificial intelligence,
such as deep learning image reconstruction (DLIR), have been intro-
duced to routine clinical practice. DLIR is the first Food and Drug
ive Reconstruction-V; CHD, Cong
ounsfield Unit; NPS, Noise Pow
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Administration cleared technology to utilize a deep neural network-
based reconstruction engine to improve image quality on CT.4 Noise
is suppressed without impacting anatomical and pathological struc-
tures. Dose reduction has been reported by several authors for adult
cardiac CTs.5–7 However, to our knowledge no study was focused on
pediatric cardiac CT. To objectively assess a potential dose reduction
in CT with a new algorithm, phantom study is often used as a standard
since an experimental process conducted directly on patients to
decrease dose and assess image quality is not feasible.8

The objective of this study was to optimize CT radiation exposure
while maintaining an equivalent image quality for the diagnosis of CHD
using a DLIR reconstruction.
enital Heart Disease; CTDI, Volume CT dose index; DLIR, Deep Learning Image
er Spectrum; NPWE, Non-Prewhitening With Eye filter; TTF, Target Transfer
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2. Materials and methods

2.1. Materials

A pediatric chest anthropomorphic phantomwas used to assess image
quality and the potential dose reduction using DLIR. The phantom
mimics the attenuation of a 6-months old child and contains two separate
parts: a soft-tissue background to assess the noise and a 2 cm-diameter
contrast rod (400 HU at 80 kVp) to assess the CT spatial resolution. A
platform connected to the CT could simulate a heart beating at 130 bpm
without moving the phantom.

2.2. Image acquisition

Phantom was scanned on a 256-detectors Revolution ™ CT (GE
Healthcare), using the clinical protocol for CHD in axial mode with a 160
mm collimation for four dose levels: 0.7, 1.3, 2 and the mean clinical
dose, 2.6 mGy. The gantry rotation time was 0.28s, the tube voltage was
80 kVp and automatic tube current modulation was used to perform the
acquisitions. Acquisitions were repeated 20 times to statistically obtain
precise image quality results.

Contiguous images were reconstructed using a slice thickness of
0.625 mm with various iterative reconstruction algorithms, ASIR-V0,
ASIR-V50, ASIR-V80 and DLIR-H. The CTDI was extracted from the
dose report of each exam.

2.3. Quantitative analysis

The quantitative analysis was performed by a medical physicist (A.V.,
with five years of experience). The noise magnitude and texture were
assessed using 600 regions of interest of 200 � 200 pixels in the homo-
geneous phantom part, following the methodology described by Boone
et al.9

Then, the CT spatial resolution was computed using the edge of the
high contrast rod, following the methodology described by Samei et al.10

500 squared regions of interest of 200� 200 pixels were used to calculate
the target transfer function (TTF), which measures how spatial fre-
quencies pass through the CT.5 The minimal distance between two high
contrast vessels to correctly distinguish themwas then extracted from the
TTF. The value of the TTF at 5% was used, which commonly represents
the spatial resolution limit to distinguish two structures.11

By integrating the noise properties and the CT spatial resolution
(TTF), the detectability of two simulated 1 mm in diameter enhanced
vessels at 250 and 400 HU was assessed using a mathematical model
observer described by Ott et al.12 This model has demonstrated a good
agreement with human observers’ performances.13 The contrast values of
the two vessels were chosen based on the minimal enhancement accepted
clinically for the ascending aorta and pulmonary trunk. The area under
the receiver operating characteristic curve (AUC) was used as a figure of
merit to describe the detectability and fitted as a function of the dose
Fig. 1. Detection of a 1 mm vessel with a contrast of respectively 250 HU and 40
algorithms (represented by diamonds, squarres, crosses and circles lines).
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level. Potential dose reduction (while maintaining similar AUC values)
was computed by comparing DLIR-H and ASIR-V 50, the actual clinical
standard.

2.4. Statistical analysis

All analyses were performed using the Scipy (v1,9,0) package for
Python (v3.8). Continuous data were presented as mean � standard de-
viation. Due to the high number of acquisitions for each condition
necessary to precisely compute the various metrics, no standard devia-
tion can be calculated for the mathematical model observer.

3. Results

Fig. 1 shows the detectability of two vessels with a contrast of 250 HU
and 400 HU as a function of the dose level for the different types of image
reconstruction (ASIR-V0, ASIR-V50, ASIR-V80 and DLIR H).

As expected, the detectability increased with higher doses for both
contrast values. Comparing various strengths of iterative algorithms, the
detectability is higher for ASIR-V80 than for ASIR-V0. The use of the
high-strength DLIR algorithm increased detectability in comparison with
ASIR-V50. AUC values for DLIR-H and ASIRV-50 were 1 and 0.977,
respectively for the mean clinical dose 2.6 mGy. DLIR improved image
quality by reducing noise as shown in Fig. 2. To maintain a similar level
of detection, the dose could be reduced by 64% using high-strength DLIR
in comparison with ASIR-V50.

The minimal distance needed between the wall of two vessels to
distinguish them perfectly (1 mm in diameter, 400 HU of contrast) was
defined based on the CT spatial resolution (Table 1). The various strength
of IR algorithm ASIR-V didn't improve the minimal distance to distin-
guish two vessels. At various dose levels, high-strength DLIR improved
the ability to distinguish two vessels by 20.9% in comparison with
ASIRV-50. The minimum distance to distinguish two vessels was 1.96
mm.

Table 1 Minimal distance in mm to distinguish two 1 mm in diameter
vessels with a contrast of 400 HU.

4. Discussion

As proposed by several authors for adult cardiac CT, the introduction
of DLIR in clinical practice could reduce patient exposure.5–7 To assess a
potential dose reduction for pediatric cardiac CT, an anthropomorphic
phantommimicking the attenuation of newborns was used. Our phantom
analysis showed a potential dose reduction with high-strength DLIR of
64% with similar detectability level, even providing a better spatial
resolution. The potential of discrimination between two vessels while
covering the whole cardiovascular system was 20% higher. Similarly,
Benz et al.,14 showed a reduction in radiation dose for adult cardiac CT
with DLIR by 43% without significant impact on image noise. As already
demonstrated by Euler et al.,15 the various strengths of IR algorithm
0 HU for the four dose levels (colour dots at 0.7, 1.3, 2, 2.6) and four various



Fig. 2. Pediatric phantom containing the high-contrast rod for the target transfer function computation reconstructed with various IR algorithms: (left) ASIR-V 0%,
middle (ASIR-V 50%), right (DLIR-H). Noise is expressed as the standard-deviation (SD).

Table 1
Minimal distance in mm to distinguish two 1 mm vessels with a contrast of 400
HU.

CTDIvol (mGy)/Reconstruction Algorithm 0.7 1.3 2 2.6

DLIR-H 1.96 1.96 1.95 1.96
ASIR-V0 2.53 2.52 2.51 2.51
ASIR-V50 2.51 2.49 2.48 2.44
ASIR-V80 2.5 2.56 2.57 2.57
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ASIR-V have only an impact on the noise level and not on CT spatial
resolution. This explains why ASIRV-0, ASIRV-50, and ASIRV-80 exhibit
similar minimum distances to distinguish two high-contrast vessels.

Further limitations of this study include the use of a single CT
manufacturer, which restricts external validation. Furthermore, despite
the use of a platform connected to the CT simulating heart beating, the
anthropomorphic phantom was not moving during the CT acquisition.
Temporal resolution should also be assessed and could decrease the
detectability performances on phantoms. However, with its higher
spatial resolution, DLIR could also decrease motion blurring.16 Finally,
even if phantom studies are the first step to assess maximal dose reduc-
tion that could be achieved, this should now be confirmed in clinical
conditions with subjective and quantitative analysis on patients, as pro-
posed by Benz et al.6

5. Conclusion

In conclusion, in pediatric cardiac CT, DLIR-H offers a potential dose
reduction of 64% while maintaining a similar level of detection and a
better spatial resolution in comparison with ASIR-V50.
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