265 research outputs found

    Ketogenic diets as an adjuvant therapy for glioblastoma (KEATING): a randomized, mixed methods, feasibility study

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Neuro-Oncology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11060-020-03417-8Purpose We conducted a feasibility study to investigate the use of ketogenic diets (KDs) as an adjuvant therapy for patients with glioblastoma (GBM), investigating (i) trial feasibility; (ii) potential impacts of the trial on patients’ quality of life and health; (iii) patients’ perspectives of their decision-making when invited to participate in the trial and (iv) recommending improvements to optimize future phase III trials. Methods A single-center, prospective, randomized, pilot study (KEATING), with an embedded qualitative design. Twelve newly diagnosed patients with GBM were randomized 1:1 to modifed ketogenic diet (MKD) or medium chain triglyceride ketogenic diet (MCTKD). Primary outcome was retention at three months. Semi-structured interviews were conducted with a purposive sample of patients and caregivers (n=15). Descriptive statistics were used for quantitative outcomes and qualitative data were analyzed thematically aided by NVivo. Results KEATING achieved recruitment targets, but the recruitment rate was low (28.6%). Retention was poor; only four of 12 patients completed the three-month diet (MCTKD n=3; MKD n=1). Participants’ decisions were intuitive and emotional; caregivers supported diet implementation and infuenced the patients’ decision to participate. Those who declined made a deliberative and considered decision factoring diet burden and quality of life. A three-month diet was undesirable to patients who declined and withdrew. Conclusion Recruitment to a KD trial for patients with GBM is possible. A six-week intervention period is proposed for a phase III trial. The role of caregiver should not be underestimated. Future trials should optimize and adequately support the decision-making of patients

    Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study

    Get PDF
    Background Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood. Methods We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution. Results Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms). Conclusion Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve

    Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knockdown resistance in insects resulting from mutation(s) in the voltage gated Na<sup>+ </sup>channel (VGSC) is one of the mechanisms of resistance against DDT and pyrethroids. Recently a point mutation leading to Leu-to-Phe substitution in the VGSC at residue 1014, a most common <it>kdr </it>mutation in insects, was reported in <it>Anopheles culicifacies</it>-a major malaria vector in the Indian subcontinent. This study reports the presence of two additional amino acid substitutions in the VGSC of an <it>An. culicifacies </it>population from Malkangiri district of Orissa, India.</p> <p>Methods</p> <p><it>Anopheles culicifacies sensu lato (s.l.) </it>samples, collected from a population of Malkangiri district of Orissa (India), were sequenced for part of the second transmembrane segment of VGSC and analyzed for the presence of non-synonymous mutations. A new primer introduced restriction analysis-PCR (PIRA-PCR) was developed for the detection of the new mutation L1014S. The <it>An. culicifacies </it>population was genotyped for the presence of L1014F substitution by an amplification refractory mutation system (ARMS) and for L1014S substitutions by using a new PIRA-PCR developed in this study. The results were validated through DNA sequencing.</p> <p>Results</p> <p>DNA sequencing of <it>An. culicifacies </it>individuals collected from district Malkangiri revealed the presence of three amino acid substitutions in the IIS6 transmembrane segments of VGSC, each one resulting from a single point mutation. Two alternative point mutations, 3042A>T transversion or 3041T>C transition, were found at residue L1014 leading to Leu (TTA)-to-Phe (TTT) or -Ser (TCA) changes, respectively. A third and novel substitution, Val (GTG)-to-Leu (TTG or CTG), was identified at residue V1010 resulting from either of the two transversions–3028G>T or 3028G>C. The L1014S substitution co-existed with V1010L in all the samples analyzed irrespective of the type of point mutation associated with the latter. The PIRA-PCR strategy developed for the identification of the new mutation L1014S was found specific as evident from DNA sequencing results of respective samples. Since L1014S was found tightly linked to V1010L, no separate assay was developed for the latter mutation. Screening of population using PIRA-PCR assays for 1014S and ARMS for 1014F alleles revealed the presence of all the three amino acid substitutions in low frequency.</p> <p>Conclusions</p> <p>This is the first report of the presence of L1014S (homologous to the <it>kdr-e </it>in <it>An. gambiae</it>) and a novel mutation V1010L (resulting from G-to-T or -C transversions) in the VGSC of <it>An. culicifacies </it>in addition to the previously described mutation L1014F. The V1010L substitution was tightly linked to L1014S substitution. A new PIRA-PCR strategy was developed for the detection of L1014S mutation and the linked V1010L mutation.</p

    Molecular identification of adenovirus causing respiratory tract infection in pediatric patients at the University of Malaya Medical Center

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are at least 51 adenovirus serotypes (AdV) known to cause human infections. The prevalence of the different human AdV (HAdV) serotypes varies among different regions. Presently, there are no reports of the prevalent HAdV types found in Malaysia. The present study was undertaken to identify the HAdV types associated primarily with respiratory tract infections (RTI) of young children in Malaysia.</p> <p>Methods</p> <p>Archived HAdV isolates from pediatric patients with RTI seen at the University of Malaya Medical Center (UMMC), Kuala Lumpur, Malaysia from 1999 to 2005 were used. Virus isolates were inoculated into cell culture and DNA was extracted when cells showed significant cytopathic effects. AdV partial hexon gene was amplified and the sequences together with other known HAdV hexon gene sequences were used to build phylogenetic trees. Identification of HAdV types found among young children in Malaysia was inferred from the phylograms.</p> <p>Results</p> <p>At least 2,583 pediatric patients with RTI sought consultation and treatment at the UMMC from 1999 to 2005. Among these patients, 48 (< 2%) were positive for HAdV infections. Twenty-seven isolates were recovered and used for the present study. Nineteen of the 27 (~70%) isolates belonged to HAdV species C (HAdV-C) and six (~22%) were of HAdV species B (HAdV-B). Among the HAdV-C species, 14 (~74%) of them were identified as HAdV type 1 (HAdV-1) and HAdV type 2 (HAdV-2), and among the HAdV-B species, HAdV type 3 (HAdV-3) was the most common serotype identified. HAdV-C species also was isolated from throat and rectal swabs of children with hand, foot, and mouth disease (HFMD). Two isolates were identified as corresponding to HAdV-F species from a child with HFMD and a patient with intestinal obstruction.</p> <p>Conclusions</p> <p>HAdV-1 and HAdV-2 were the most common HAdV isolated from pediatric patients who sought treatment for RTI at the UMMC from 1999 to 2005. HAdV-B, mainly HAdV-3, was recovered from ~22% of the patients. These findings provide a benchmark for future studies on the prevalence and epidemiology of HAdV types in Malaysia and in the region.</p

    Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation

    Get PDF
    Influenza A virus pandemics and emerging anti-viral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and lung inflammation. We investigated whether the primary enzymatic source of inflammatory cell ROS (reactive oxygen species), Nox2-containing NADPH oxidase, is a novel pharmacological target against the lung inflammation caused by influenza A viruses. Male WT (C57BL/6) and Nox2−/y mice were infected intranasally with low pathogenicity (X-31, H3N2) or higher pathogenicity (PR8, H1N1) influenza A virus. Viral titer, airways inflammation, superoxide and peroxynitrite production, lung histopathology, pro-inflammatory (MCP-1) and antiviral (IL-1β) cytokines/chemokines, CD8+ T cell effector function and alveolar epithelial cell apoptosis were assessed. Infection of Nox2−/y mice with X-31 virus resulted in a significant reduction in viral titers, BALF macrophages, peri-bronchial inflammation, BALF inflammatory cell superoxide and lung tissue peroxynitrite production, MCP-1 levels and alveolar epithelial cell apoptosis when compared to WT control mice. Lung levels of IL-1β were ∼3-fold higher in Nox2−/y mice. The numbers of influenza-specific CD8+DbNP366+ and DbPA224+ T cells in the BALF and spleen were comparable in WT and Nox2−/y mice. In vivo administration of the Nox2 inhibitor apocynin significantly suppressed viral titer, airways inflammation and inflammatory cell superoxide production following infection with X-31 or PR8. In conclusion, these findings indicate that Nox2 inhibitors have therapeutic potential for control of lung inflammation and damage in an influenza strain-independent manner

    Impaired immune function in Gulf War Illness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gulf War Illness (GWI) remains a serious health consequence for at least 11,000 veterans of the first Gulf War in the early 1990s. Our understanding of the health consequences that resulted remains inadequate, and this is of great concern with another deployment to the same theater of operations occurring now. Chronic immune cell dysfunction and activation have been demonstrated in patients with GWI, although the literature is not uniform. We exposed GWI patients and matched controls to an exercise challenge to explore differences in immune cell function measured by classic immune assays and gene expression profiling.</p> <p>Methods</p> <p>This pilot study enrolled 9 GWI cases identified from the Department of Veterans Affairs GWI registry, and 11 sedentary control veterans who had not been deployed to the Persian Gulf and were matched to cases by sex, body mass index (BMI) and age. We measured peripheral blood cell numbers, NK cytotoxicity, cytokines and expression levels of 20,000 genes immediately before, immediately after and 4 hours following a standard bicycle ergometer exercise challenge.</p> <p>Results</p> <p>A repeated-measures analysis of variance revealed statistically significant differences for three NK cell subsets and NK cytotoxicity between cases and controls (p < 0.05). Linear regression analysis correlating NK cell numbers to the gene expression profiles showed high correlation of genes associated with NK cell function, serving as a biologic validation of both the <it>in vitro </it>assays and the microarray platform. Intracellular perforin levels in NK and CD8 T-cells trended lower and showed a flatter profile in GWI cases than controls, as did the expression levels of the perforin gene PRF1. Genes distinguishing cases from controls were associated with the glucocorticoid signaling pathway.</p> <p>Conclusion</p> <p>GWI patients demonstrated impaired immune function as demonstrated by decreased NK cytotoxicity and altered gene expression associated with NK cell function. Pro-inflammatory cytokines, T-cell ratios, and dysregulated mediators of the stress response (including salivary cortisol) were also altered in GWI cases compared to control subjects. An interesting and potentially important observation was that the exercise challenge augments these differences, with the most significant effects observed immediately after the stressor, possibly implicating some block in the NK and CD8 T-cells ability to respond to "stress-mediated activation". This has positive implications for the development of laboratory diagnostic tests for this syndrome and provides a paradigm for exploration of the immuno-physiological mechanisms that are operating in GWI, and similar complex syndromes. Our results do not necessarily elucidate the cause of GWI, but they do reveal a role for immune cell dysfunction in sustaining illness.</p

    Transplantation tolerance: lessons from experimental rodent models

    Get PDF
    Immunological tolerance or functional unresponsiveness to a transplant is arguably the only approach that is likely to provide long-term graft survival without the problems associated with life-long global immunosuppression. Over the past 50 years, rodent models have become an invaluable tool for elucidating the mechanisms of tolerance to alloantigens. Importantly, rodent models can be adapted to ensure that they reflect more accurately the immune status of human transplant recipients. More recently, the development of genetically modified mice has enabled specific insights into the cellular and molecular mechanisms that play a key role in both the induction and maintenance of tolerance to be obtained and more complex questions to be addressed. This review highlights strategies designed to induce alloantigen specific immunological unresponsiveness leading to transplantation tolerance that have been developed through the use of experimental models

    Quantitative Comparison of Constitutive Promoters in Human ES cells

    Get PDF
    BACKGROUND: Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications, including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have quantitatively compared promoter activities of five commonly used constitutive promoters, including the human β-actin promoter (ACTB), cytomegalovirus (CMV), elongation factor-1α, (EF1α), phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies. CONCLUSION/SIGNIFICANCE: The ACTB, EF1α and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75-80% of the cells after 50 days in culture. During embryoid body (EB) differentiation, promoter activities of all five promoters decreased. Although the EF1α promoter was downregulated in approximately 50% of the cells, it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages, suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs

    A Protective Role for Complement C3 Protein during Pandemic 2009 H1N1 and H5N1 Influenza A Virus Infection

    Get PDF
    Highly pathogenic H5N1 influenza infections are associated with enhanced inflammatory and cytokine responses, severe lung damage, and an overall dysregulation of innate immunity. C3, a member of the complement system of serum proteins, is a major component of the innate immune and inflammatory responses. However, the role of this protein in the pathogenesis of H5N1 infection is unknown. Here we demonstrate that H5N1 influenza virus infected mice had increased levels of C5a and C3 activation byproducts as compared to mice infected with either seasonal or pandemic 2009 H1N1 influenza viruses. We hypothesized that the increased complement was associated with the enhanced disease associated with the H5N1 infection. However, studies in knockout mice demonstrated that C3 was required for protection from influenza infection, proper viral clearance, and associated with changes in cellular infiltration. These studies suggest that although the levels of complement activation may differ depending on the influenza virus subtype, complement is an important host defense mechanism

    Crystal Structures of Two Aminoglycoside Kinases Bound with a Eukaryotic Protein Kinase Inhibitor

    Get PDF
    Antibiotic resistance is recognized as a growing healthcare problem. To address this issue, one strategy is to thwart the causal mechanism using an adjuvant in partner with the antibiotic. Aminoglycosides are a class of clinically important antibiotics used for the treatment of serious infections. Their usefulness has been compromised predominantly due to drug inactivation by aminoglycoside-modifying enzymes, such as aminoglycoside phosphotransferases or kinases. These kinases are structurally homologous to eukaryotic Ser/Thr and Tyr protein kinases and it has been shown that some can be inhibited by select protein kinase inhibitors. The aminoglycoside kinase, APH(3′)-IIIa, can be inhibited by CKI-7, an ATP-competitive inhibitor for the casein kinase 1. We have determined that CKI-7 is also a moderate inhibitor for the atypical APH(9)-Ia. Here we present the crystal structures of CKI-7-bound APH(3′)-IIIa and APH(9)-Ia, the first structures of a eukaryotic protein kinase inhibitor in complex with bacterial kinases. CKI-7 binds to the nucleotide-binding pocket of the enzymes and its binding alters the conformation of the nucleotide-binding loop, the segment homologous to the glycine-rich loop in eurkaryotic protein kinases. Comparison of these structures with the CKI-7-bound casein kinase 1 reveals features in the binding pockets that are distinct in the bacterial kinases and could be exploited for the design of a bacterial kinase specific inhibitor. Our results provide evidence that an inhibitor for a subset of APHs can be developed in order to curtail resistance to aminoglycosides
    corecore