20 research outputs found

    Recommandations pour l'amélioration d'un outil d'analyse de cycle de vie environnementale : mesure de l'incertitude et caractérisation des impacts de la consommation d'eau

    Get PDF
    L’analyse de cycle de vie, encadrée par les normes internationales ISO 14 040 et ISO 14 044 et les lignes directrices de la Commission européenne dans les documents de l’International Reference Life Cycle Data System Handbook, est une méthode reconnue internationalement pour réaliser l’évaluation environnementale exhaustive de produits et services. L’Institut des Corps Gras a développé un outil d’analyse de cycle de vie pour les huiles végétales. Pour demeurer pertinente face au contexte du secteur et de l'ACV en général, la méthodologie doit être mise à jour régulièrement. Pour la version actuelle de la méthodologie, l’intégration de la mesure de l’incertitude et la mise à jour de la méthode de caractérisation des impacts de la consommation d’eau sont considérés. Pour ce faire, une revue de littérature permet de faire ressortir la situation actuelle de la prise en compte de l’incertitude dans les analyses de cycle de vie, et les différentes méthodes utilisées en analyse de cycle de vie. Une seconde revue de littérature présente les paramètres importants à considérer pour caractériser les impacts de la consommation d’eau, soit l'empreinte eau, et les méthodes pertinentes intégrant ces paramètres. L'empreinte eau, au sens de la norme ISO 14 046 :2014, représente l'ensemble des impacts sur la ressource « eau », tant sur les aspects quantitatifs que sur les aspects qualitatifs. Pour l'instant, en ACV, un indicateur d’impact pour la consommation d'eau solide doit couvrir les impacts liés strictement à la consommation locale de l'eau en relation au contexte géographique et temporel, sans considérer le changement de qualité de celle-ci. Les méthodes de mesure de l’incertitude et d’évaluation des impacts de la consommation d’eau sont nombreuses. Les méthodes les plus pertinentes sont décrites et évaluées. Des analyses multicritères ressortent les méthodes les plus performantes et les mieux habilitées à accomplir leur rôle, compte tenu du contexte de l’Institut des Corps Gras et de la nature de ses travaux. Pour l’incertitude, la méthode d’échantillonnage de Monte Carlo ressort comme étant la plus facilement utilisable. Pour l’impact de la consommation d’eau, la méthode Available Water Remaining est la mieux évaluée. Cependant, pour les mettre en œuvre, des travaux futurs, portant notamment sur ls renseignements des données utilisées, sont à prévoir. Les documents référencés, les grilles d’analyses et les évaluations effectuées peuvent être réutilisés pour l’approfondissement des travaux menés et les travaux futurs basés sur cet essai

    A necessary step forward for proper non-energetic abiotic resource use consideration in life cycle assessment: The functional dissipation approach using dynamic material flow analysis data

    Get PDF
    The impact of non-energetic abiotic resource use in life cycle as- sessment (LCA) has been receiving much attention in the last decades, and even more so since the resource efficiency and circular economy have become prominent subjects of discussion in public and private sectors all around the world. As LCA has proven to be the most solid holistic tool to integrate environmental impacts in sustainability as- sessments of product systems, it should be able to integrate current concerns about non-energetic abiotic resource use into its methodology and therefore provide exploitable results for every LCA user. However, to this day no consensus has been reached on which approach for characterizing impacts due to the use of these resources should be used (Drielsma et al., 2016; Sonderegger et al., 2017). This seems to be at- tributable to the fact that no method is recognized as both solid on the methodological level while answering at the same time the true con- cerns for abiotic natural resource uses in LCA: the need to retain and therefore maximize their functional value in the technosphere after their extraction in order to fulfill the needs of current and future gen- erations, while minimizing the losses to the ecosphere. Indeed, abiotic resources are not always consumedBRGM ADEM

    Addressing the dissipation of mineral resources in life cycle assessment : Improving concepts and development of impact assessment methods for 61 metals

    No full text
    Les flux dissipatifs de ressources minérales sont au cœur de l'évaluation de l'impact environnemental, car ils sont nocifs pour l'environnement et représentent un gaspillage de ressources non renouvelables. L'analyse du cycle de vie (ACV) est un outil d'évaluation environnementale reconnu encadré par les normes ISO 14040/44, visant généralement à prévenir les impacts sur trois aires de protection: la santé des écosystèmes, la santé humaine, et les ressources naturelles. Traditionnellement, l'impact de l’extraction sur l’épuisement des ressources minérales a été évalué pour mesurer l’impact sur l’aire de protection ressources naturelles. Cependant, les tendances récentes des discussions au sein de la communauté ACV suggèrent que la dissipation des minéraux peut être plus pertinente à évaluer, car elle représente la perte réelle de matériaux qui ne sont plus accessibles pour une utilisation future, alors que l'épuisement des stocks géologiques peut en fait être considéré souhaitable tant et aussi longtemps que les ressources minérales restent accessibles pour une réutilisation future.Cette thèse a pour objectif d'améliorer la prise en compte des flux dissipatifs de ressources minérales dans le cadre de l'ACV, en particulier sur l’aire de protection des ressources naturelles. D'une manière générale, deux thèmes sous-jacents sont inclus dans l'objectif: améliorer la compréhension des impacts de l'utilisation des ressources minérales sur l’aire de protection ressources naturelles, et développer une méthode d’évaluation des impacts environnementaux permettant de quantifier ces impacts en relation avec la dissipation des ressources minérales.Nous étudions d'abord les impacts reliant les interventions humaines à l’aire de protection ressources naturelles. Cette étude permet d’établir les liens entre les flux de ressources minérales et l’aire de protection, afin de fournir un cadre cohérent pour évaluer les impacts de l'utilisation des ressources minérales sur celle-ci en utilisant plusieurs méthodes d’évaluation des impacts à la fois. Ensuite, nous explorons les concepts et la terminologie entourant la dissipation et proposons un cadre conceptuel pour aborder la dissipation des ressources minérales en utilisant des données d’analyse de flux de matière dynamiques. Deux options sont identifiées : retravailler les inventaires de cycle de vie actuels pour intégrer les flux dissipatifs et développer une méthode d'évaluation de l'impact du cycle de vie appropriée, ou proposer une méthode d’évaluation des impacts intégrant la dissipation dans le calcul de ses facteurs de caractérisation et qui peut être appliquée directement aux flux d'extraction dans les données d’inventaires actuelles. La deuxième option est retenue pour la suite de la thèse.Des données sont collectées pour 61 éléments métalliques et des résultats d’analyse de flux de matière dynamique sont obtenus pour ces derniers. Nous proposons alors deux méthodes pour mesurer l’impact de la dissipation sur les ressources minérales : le taux de dissipation moyen (ADR, pour « average dissipation rate ») et le temps de service potentiel perdu (LPST, pour « lost potential service time »). A partir des résultats d’analyse de flux de matière dynamique, des facteurs de caractérisation midpoint sont calculés pour 61 métaux. En outre, les facteurs de caractérisation endpoint sont proposés à l'aide d'un indice basé sur les prix. Enfin, les facteurs de caractérisation sont appliqués à un large éventail d'ensembles de données d'inventaires de cycle de vie afin d'observer les tendances à attendre dans les études ACV couvrant la dissipation des ressources minérales en utilisant les méthodes développées. Ces résultats sont comparés à ceux d'autres méthodes fréquemment utilisées pour évaluer les impacts de l’utilisation de ressources minérales.Dissipative flows of mineral resources are central to environmental impact assessment, since they are harmful to the environment and embody a wasteful use of non-renewable resources. Life Cycle Assessment (LCA) is a recognized environmental assessment tool framed by the ISO 14040/44 norms, typically aiming to prevent damage on three areas of protection (AoP): ecosystem health, human health, and natural resources.Traditionally, the depletion of mineral resources has been assessed to quantify impacts on the AoP natural resources. However, recent trends in discussion within the LCA community suggest that dissipation of minerals may be more relevant to assess, since they represent the real loss of materials that are no longer accessible for future use, whereas the depletion of geological stocks may actually be considered to be desirable for as long as mineral resources remain accessible for further human use.This thesis has the objective to improve the consideration of dissipative flows of mineral resources in the LCA framework, focusing on the AoP natural resources. Broadly speaking, two topics are encompassed within the objective: improving the understanding of the impacts of mineral resource use on the AoP natural resources, and developing a life cycle impact assessment (LCIA) method allowing to quantify these impacts in relation to the dissipation of mineral resources.We first investigate the impact pathways relating human interventions to the AoP natural resources. The relation between resource flows and the AoP natural resources is studied in order to provide a coherent framework to assess the impacts of mineral resource use on the AoP using multiple LCIA methods at once. Then, we explore concepts and terminology surrounding dissipation and propose a conceptual framework to address the dissipation of mineral resources based on dynamic material flow analysis (MFA) data. Two options are identified: reworking current life cycle inventories to integrate dissipative flows and develop a life cycle impact assessment (LCIA) method accordingly, or propose a LCIA method that integrates dissipation in the calculation of its characterization factors that can be applied to extraction flows in the current inventories. The second option is further developed in this thesis.In order to develop LCIA methods, data is collected for 61 metallic elements and dynamic material flow analysis results are computed for them. We then propose two methods to measure the impact of dissipation on mineral resources: the average dissipation rate (ADR) and the potential service time lost (LPST). Based on the dynamic material flow analysis results, midpoint characterization factors are calculated for 61 metals. In addition, endpoint characterization factors are computed using a price-based index. Finally, the characterization factors are applied to a wide range of life cycle inventory datasets in order to observe the trends to be expected in LCA studies covering the dissipation of mineral resources using the developed methods. These results are compared to those of other frequently used LCIA methods to address the impacts of mineral resource use

    Prise en compte de la dissipation de ressources minérales en analyse du cycle de vie : amélioration des concepts et développement de méthodes d’évaluation d‘impact pour 61 métaux

    No full text
    Les flux dissipatifs de ressources minérales sont au cœur de l'évaluation de l'impact environnemental, car ils sont nocifs pour l'environnement et représentent un gaspillage de ressources non renouvelables. L'analyse du cycle de vie (ACV) est un outil d'évaluation environnementale reconnu encadré par les normes ISO 14040/44, visant généralement à prévenir les impacts sur trois aires de protection: la santé des écosystèmes, la santé humaine, et les ressources naturelles. Traditionnellement, l'impact de l’extraction sur l’épuisement des ressources minérales a été évalué pour mesurer l’impact sur l’aire de protection ressources naturelles. Cependant, les tendances récentes des discussions au sein de la communauté ACV suggèrent que la dissipation des minéraux peut être plus pertinente à évaluer, car elle représente la perte réelle de matériaux qui ne sont plus accessibles pour une utilisation future, alors que l'épuisement des stocks géologiques peut en fait être considéré souhaitable tant et aussi longtemps que les ressources minérales restent accessibles pour une réutilisation future.Cette thèse a pour objectif d'améliorer la prise en compte des flux dissipatifs de ressources minérales dans le cadre de l'ACV, en particulier sur l’aire de protection des ressources naturelles. D'une manière générale, deux thèmes sous-jacents sont inclus dans l'objectif: améliorer la compréhension des impacts de l'utilisation des ressources minérales sur l’aire de protection ressources naturelles, et développer une méthode d’évaluation des impacts environnementaux permettant de quantifier ces impacts en relation avec la dissipation des ressources minérales.Nous étudions d'abord les impacts reliant les interventions humaines à l’aire de protection ressources naturelles. Cette étude permet d’établir les liens entre les flux de ressources minérales et l’aire de protection, afin de fournir un cadre cohérent pour évaluer les impacts de l'utilisation des ressources minérales sur celle-ci en utilisant plusieurs méthodes d’évaluation des impacts à la fois. Ensuite, nous explorons les concepts et la terminologie entourant la dissipation et proposons un cadre conceptuel pour aborder la dissipation des ressources minérales en utilisant des données d’analyse de flux de matière dynamiques. Deux options sont identifiées : retravailler les inventaires de cycle de vie actuels pour intégrer les flux dissipatifs et développer une méthode d'évaluation de l'impact du cycle de vie appropriée, ou proposer une méthode d’évaluation des impacts intégrant la dissipation dans le calcul de ses facteurs de caractérisation et qui peut être appliquée directement aux flux d'extraction dans les données d’inventaires actuelles. La deuxième option est retenue pour la suite de la thèse.Des données sont collectées pour 61 éléments métalliques et des résultats d’analyse de flux de matière dynamique sont obtenus pour ces derniers. Nous proposons alors deux méthodes pour mesurer l’impact de la dissipation sur les ressources minérales : le taux de dissipation moyen (ADR, pour « average dissipation rate ») et le temps de service potentiel perdu (LPST, pour « lost potential service time »). A partir des résultats d’analyse de flux de matière dynamique, des facteurs de caractérisation midpoint sont calculés pour 61 métaux. En outre, les facteurs de caractérisation endpoint sont proposés à l'aide d'un indice basé sur les prix. Enfin, les facteurs de caractérisation sont appliqués à un large éventail d'ensembles de données d'inventaires de cycle de vie afin d'observer les tendances à attendre dans les études ACV couvrant la dissipation des ressources minérales en utilisant les méthodes développées. Ces résultats sont comparés à ceux d'autres méthodes fréquemment utilisées pour évaluer les impacts de l’utilisation de ressources minérales.Dissipative flows of mineral resources are central to environmental impact assessment, since they are harmful to the environment and embody a wasteful use of non-renewable resources. Life Cycle Assessment (LCA) is a recognized environmental assessment tool framed by the ISO 14040/44 norms, typically aiming to prevent damage on three areas of protection (AoP): ecosystem health, human health, and natural resources.Traditionally, the depletion of mineral resources has been assessed to quantify impacts on the AoP natural resources. However, recent trends in discussion within the LCA community suggest that dissipation of minerals may be more relevant to assess, since they represent the real loss of materials that are no longer accessible for future use, whereas the depletion of geological stocks may actually be considered to be desirable for as long as mineral resources remain accessible for further human use.This thesis has the objective to improve the consideration of dissipative flows of mineral resources in the LCA framework, focusing on the AoP natural resources. Broadly speaking, two topics are encompassed within the objective: improving the understanding of the impacts of mineral resource use on the AoP natural resources, and developing a life cycle impact assessment (LCIA) method allowing to quantify these impacts in relation to the dissipation of mineral resources.We first investigate the impact pathways relating human interventions to the AoP natural resources. The relation between resource flows and the AoP natural resources is studied in order to provide a coherent framework to assess the impacts of mineral resource use on the AoP using multiple LCIA methods at once. Then, we explore concepts and terminology surrounding dissipation and propose a conceptual framework to address the dissipation of mineral resources based on dynamic material flow analysis (MFA) data. Two options are identified: reworking current life cycle inventories to integrate dissipative flows and develop a life cycle impact assessment (LCIA) method accordingly, or propose a LCIA method that integrates dissipation in the calculation of its characterization factors that can be applied to extraction flows in the current inventories. The second option is further developed in this thesis.In order to develop LCIA methods, data is collected for 61 metallic elements and dynamic material flow analysis results are computed for them. We then propose two methods to measure the impact of dissipation on mineral resources: the average dissipation rate (ADR) and the potential service time lost (LPST). Based on the dynamic material flow analysis results, midpoint characterization factors are calculated for 61 metals. In addition, endpoint characterization factors are computed using a price-based index. Finally, the characterization factors are applied to a wide range of life cycle inventory datasets in order to observe the trends to be expected in LCA studies covering the dissipation of mineral resources using the developed methods. These results are compared to those of other frequently used LCIA methods to address the impacts of mineral resource use

    Prise en compte de la dissipation de ressources minérales en analyse du cycle de vie : amélioration des concepts et développement de méthodes d’évaluation d‘impact pour 61 métaux

    No full text
    Dissipative flows of mineral resources are central to environmental impact assessment, since they are harmful to the environment and embody a wasteful use of non-renewable resources. Life Cycle Assessment (LCA) is a recognized environmental assessment tool framed by the ISO 14040/44 norms, typically aiming to prevent damage on three areas of protection (AoP): ecosystem health, human health, and natural resources.Traditionally, the depletion of mineral resources has been assessed to quantify impacts on the AoP natural resources. However, recent trends in discussion within the LCA community suggest that dissipation of minerals may be more relevant to assess, since they represent the real loss of materials that are no longer accessible for future use, whereas the depletion of geological stocks may actually be considered to be desirable for as long as mineral resources remain accessible for further human use.This thesis has the objective to improve the consideration of dissipative flows of mineral resources in the LCA framework, focusing on the AoP natural resources. Broadly speaking, two topics are encompassed within the objective: improving the understanding of the impacts of mineral resource use on the AoP natural resources, and developing a life cycle impact assessment (LCIA) method allowing to quantify these impacts in relation to the dissipation of mineral resources.We first investigate the impact pathways relating human interventions to the AoP natural resources. The relation between resource flows and the AoP natural resources is studied in order to provide a coherent framework to assess the impacts of mineral resource use on the AoP using multiple LCIA methods at once. Then, we explore concepts and terminology surrounding dissipation and propose a conceptual framework to address the dissipation of mineral resources based on dynamic material flow analysis (MFA) data. Two options are identified: reworking current life cycle inventories to integrate dissipative flows and develop a life cycle impact assessment (LCIA) method accordingly, or propose a LCIA method that integrates dissipation in the calculation of its characterization factors that can be applied to extraction flows in the current inventories. The second option is further developed in this thesis.In order to develop LCIA methods, data is collected for 61 metallic elements and dynamic material flow analysis results are computed for them. We then propose two methods to measure the impact of dissipation on mineral resources: the average dissipation rate (ADR) and the potential service time lost (LPST). Based on the dynamic material flow analysis results, midpoint characterization factors are calculated for 61 metals. In addition, endpoint characterization factors are computed using a price-based index. Finally, the characterization factors are applied to a wide range of life cycle inventory datasets in order to observe the trends to be expected in LCA studies covering the dissipation of mineral resources using the developed methods. These results are compared to those of other frequently used LCIA methods to address the impacts of mineral resource use.Les flux dissipatifs de ressources minérales sont au cœur de l'évaluation de l'impact environnemental, car ils sont nocifs pour l'environnement et représentent un gaspillage de ressources non renouvelables. L'analyse du cycle de vie (ACV) est un outil d'évaluation environnementale reconnu encadré par les normes ISO 14040/44, visant généralement à prévenir les impacts sur trois aires de protection: la santé des écosystèmes, la santé humaine, et les ressources naturelles. Traditionnellement, l'impact de l’extraction sur l’épuisement des ressources minérales a été évalué pour mesurer l’impact sur l’aire de protection ressources naturelles. Cependant, les tendances récentes des discussions au sein de la communauté ACV suggèrent que la dissipation des minéraux peut être plus pertinente à évaluer, car elle représente la perte réelle de matériaux qui ne sont plus accessibles pour une utilisation future, alors que l'épuisement des stocks géologiques peut en fait être considéré souhaitable tant et aussi longtemps que les ressources minérales restent accessibles pour une réutilisation future.Cette thèse a pour objectif d'améliorer la prise en compte des flux dissipatifs de ressources minérales dans le cadre de l'ACV, en particulier sur l’aire de protection des ressources naturelles. D'une manière générale, deux thèmes sous-jacents sont inclus dans l'objectif: améliorer la compréhension des impacts de l'utilisation des ressources minérales sur l’aire de protection ressources naturelles, et développer une méthode d’évaluation des impacts environnementaux permettant de quantifier ces impacts en relation avec la dissipation des ressources minérales.Nous étudions d'abord les impacts reliant les interventions humaines à l’aire de protection ressources naturelles. Cette étude permet d’établir les liens entre les flux de ressources minérales et l’aire de protection, afin de fournir un cadre cohérent pour évaluer les impacts de l'utilisation des ressources minérales sur celle-ci en utilisant plusieurs méthodes d’évaluation des impacts à la fois. Ensuite, nous explorons les concepts et la terminologie entourant la dissipation et proposons un cadre conceptuel pour aborder la dissipation des ressources minérales en utilisant des données d’analyse de flux de matière dynamiques. Deux options sont identifiées : retravailler les inventaires de cycle de vie actuels pour intégrer les flux dissipatifs et développer une méthode d'évaluation de l'impact du cycle de vie appropriée, ou proposer une méthode d’évaluation des impacts intégrant la dissipation dans le calcul de ses facteurs de caractérisation et qui peut être appliquée directement aux flux d'extraction dans les données d’inventaires actuelles. La deuxième option est retenue pour la suite de la thèse.Des données sont collectées pour 61 éléments métalliques et des résultats d’analyse de flux de matière dynamique sont obtenus pour ces derniers. Nous proposons alors deux méthodes pour mesurer l’impact de la dissipation sur les ressources minérales : le taux de dissipation moyen (ADR, pour « average dissipation rate ») et le temps de service potentiel perdu (LPST, pour « lost potential service time »). A partir des résultats d’analyse de flux de matière dynamique, des facteurs de caractérisation midpoint sont calculés pour 61 métaux. En outre, les facteurs de caractérisation endpoint sont proposés à l'aide d'un indice basé sur les prix. Enfin, les facteurs de caractérisation sont appliqués à un large éventail d'ensembles de données d'inventaires de cycle de vie afin d'observer les tendances à attendre dans les études ACV couvrant la dissipation des ressources minérales en utilisant les méthodes développées. Ces résultats sont comparés à ceux d'autres méthodes fréquemment utilisées pour évaluer les impacts de l’utilisation de ressources minérales

    Recommandations pour l'amélioration d'un outil d'analyse de cycle de vie environnementale : mesure de l'incertitude et caractérisation des impacts de la consommation d'eau

    No full text
    L’analyse de cycle de vie, encadrée par les normes internationales ISO 14 040 et ISO 14 044 et les lignes directrices de la Commission européenne dans les documents de l’International Reference Life Cycle Data System Handbook, est une méthode reconnue internationalement pour réaliser l’évaluation environnementale exhaustive de produits et services. L’Institut des Corps Gras a développé un outil d’analyse de cycle de vie pour les huiles végétales. Pour demeurer pertinente face au contexte du secteur et de l'ACV en général, la méthodologie doit être mise à jour régulièrement. Pour la version actuelle de la méthodologie, l’intégration de la mesure de l’incertitude et la mise à jour de la méthode de caractérisation des impacts de la consommation d’eau sont considérés. Pour ce faire, une revue de littérature permet de faire ressortir la situation actuelle de la prise en compte de l’incertitude dans les analyses de cycle de vie, et les différentes méthodes utilisées en analyse de cycle de vie. Une seconde revue de littérature présente les paramètres importants à considérer pour caractériser les impacts de la consommation d’eau, soit l'empreinte eau, et les méthodes pertinentes intégrant ces paramètres. L'empreinte eau, au sens de la norme ISO 14 046 :2014, représente l'ensemble des impacts sur la ressource « eau », tant sur les aspects quantitatifs que sur les aspects qualitatifs. Pour l'instant, en ACV, un indicateur d’impact pour la consommation d'eau solide doit couvrir les impacts liés strictement à la consommation locale de l'eau en relation au contexte géographique et temporel, sans considérer le changement de qualité de celle-ci. Les méthodes de mesure de l’incertitude et d’évaluation des impacts de la consommation d’eau sont nombreuses. Les méthodes les plus pertinentes sont décrites et évaluées. Des analyses multicritères ressortent les méthodes les plus performantes et les mieux habilitées à accomplir leur rôle, compte tenu du contexte de l’Institut des Corps Gras et de la nature de ses travaux. Pour l’incertitude, la méthode d’échantillonnage de Monte Carlo ressort comme étant la plus facilement utilisable. Pour l’impact de la consommation d’eau, la méthode Available Water Remaining est la mieux évaluée. Cependant, pour les mettre en œuvre, des travaux futurs, portant notamment sur ls renseignements des données utilisées, sont à prévoir. Les documents référencés, les grilles d’analyses et les évaluations effectuées peuvent être réutilisés pour l’approfondissement des travaux menés et les travaux futurs basés sur cet essai

    Development of a conceptual framework to take the dissipation of non-energetic abiotic resources into account within Life Cycle Assessment

    Get PDF
    Life cycle assessment is a valuable tool to assess the ecological performance of a product system holistically. However, it is still an imperfect tool for which some of the impact categories especially need to be revisited. Abiotic resource use is an impact category for which much debate has been going on in the last years. Methodological choices in the existing indicators are often criticized, and the usefulness of results is of questionable relevance to decision takers in the industry or the policy makers. Dissipation of those resources has been identified as a promising way forward. Dynamic material flow analysis can serve as an important basis to account for dissipated flows in a product system at different scales, and therefore serve as first steps towards the integration of dissipation in life cycle assessment. The ongoing work presented here aims at proposing a sound methodology based on dynamic material flow analysis to implement the dissipation of abiotic resources in life cycle assessment

    Development of a conceptual framework and its associated indicator to take the dissipation of non- energetic abiotic resources into account within Life Cycle Assessment (LCA)

    Get PDF
    Life Cycle Assessment (LCA) is a tool allowing to assess environmental impacts of a product or service over its whole life cycle. It may serve as a support for product eco-design, policy- makers and decision-takers in governments and industries. LCA is relatively new, and methodological improvements are still required for it to be as robust as possible in order for it to fulfill its function and to be considered reliable and credible. A proper method to assess resource use in LCA has yet to be developed. In this regard, our work in progress is aiming at a better understanding and assessment of resource use impacts on Natural Resources Area of Protection in LCA with a dissipation approach

    Towards interim characterization factors to account for the dissipation of non-energetic abiotic resource in life cycle assessment

    No full text
    Towards interim characterization factors to account for the dissipation of non-energetic abiotic resource in life cycle assessmen
    corecore