1,670 research outputs found

    Rapid method for determination of antimicrobial susceptibilities pattern of urinary bacteria

    Get PDF
    Method determines bacterial sensitivity to antimicrobial agents by measuring level of adenosine triphosphate remaining in the bacteria. Light emitted during reaction of sample with a mixture of luciferase and luciferin is measured

    Backbone of complex networks of corporations: The flow of control

    Full text link
    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.Comment: 24 pages, 12 figures, 2nd version (text made more concise and readable, results unchanged

    Fragment Flow and the Nuclear Equation of State

    Full text link
    We use the Boltzmann-Uehling-Uhlenbeck model with a momentum-dependent nuclear mean field to simulate the dynamical evolution of heavy ion collisions. We re-examine the azimuthal anisotropy observable, proposed as sensitive to the equation of state of nuclear matter. We obtain that this sensitivity is maximal when the azimuthal anisotropy is calculated for nuclear composite fragments, in agreement with some previous calculations. As a test case we concentrate on semi-central 197Au + 197Au^{197}{\rm Au}\ +\ ^{197}{\rm Au} collisions at 400 AA MeV.Comment: 12 pages, ReVTeX 3.0. 12 Postscript figures, uuencoded and appende

    Optimal treatment allocations in space and time for on-line control of an emerging infectious disease

    Get PDF
    A key component in controlling the spread of an epidemic is deciding where, whenand to whom to apply an intervention.We develop a framework for using data to informthese decisionsin realtime.We formalize a treatment allocation strategy as a sequence of functions, oneper treatment period, that map up-to-date information on the spread of an infectious diseaseto a subset of locations where treatment should be allocated. An optimal allocation strategyoptimizes some cumulative outcome, e.g. the number of uninfected locations, the geographicfootprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategyfor an emerging infectious disease is challenging because spatial proximity induces interferencebetween locations, the number of possible allocations is exponential in the number oflocations, and because disease dynamics and intervention effectiveness are unknown at outbreak.We derive a Bayesian on-line estimator of the optimal allocation strategy that combinessimulation–optimization with Thompson sampling.The estimator proposed performs favourablyin simulation experiments. This work is motivated by and illustrated using data on the spread ofwhite nose syndrome, which is a highly fatal infectious disease devastating bat populations inNorth America

    (Total) Vector Domination for Graphs with Bounded Branchwidth

    Full text link
    Given a graph G=(V,E)G=(V,E) of order nn and an nn-dimensional non-negative vector d=(d(1),d(2),,d(n))d=(d(1),d(2),\ldots,d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum SVS\subseteq V such that every vertex vv in VSV\setminus S (resp., in VV) has at least d(v)d(v) neighbors in SS. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the kk-tuple dominating set problem (this kk is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respectto kk, where kk is the size of solution.Comment: 16 page

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica

    Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesLynch syndrome, caused by germline mutations in the mismatch repair genes, is associated with increased cancer risk. Here using a large whole-genome sequencing data bank, cancer registry and colorectal tumour bank we determine the prevalence of Lynch syndrome, associated cancer risks and pathogenicity of several variants in the Icelandic population. We use colorectal cancer samples from 1,182 patients diagnosed between 2000-2009. One-hundred and thirty-two (11.2%) tumours are mismatch repair deficient per immunohistochemistry. Twenty-one (1.8%) have Lynch syndrome while 106 (9.0%) have somatic hypermethylation or mutations in the mismatch repair genes. The population prevalence of Lynch syndrome is 0.442%. We discover a translocation disrupting MLH1 and three mutations in MSH6 and PMS2 that increase endometrial, colorectal, brain and ovarian cancer risk. We find thirteen mismatch repair variants of uncertain significance that are not associated with cancer risk. We find that founder mutations in MSH6 and PMS2 prevail in Iceland unlike most other populations.Ohio State University (OSU) Comprehensive Cancer Center OSU Colorectal Cancer Research fund Obrine-Weaver Fund Pelotonia Fellowship Award deCODE genetic

    BoostingTree: parallel selection of weak learners in boosting, with application to ranking

    Get PDF
    Boosting algorithms have been found successful in many areas of machine learning and, in particular, in ranking. For typical classes of weak learners used in boosting (such as decision stumps or trees), a large feature space can slow down the training, while a long sequence of weak hypotheses combined by boosting can result in a computationally expensive model. In this paper we propose a strategy that builds several sequences of weak hypotheses in parallel, and extends the ones that are likely to yield a good model. The weak hypothesis sequences are arranged in a boosting tree, and new weak hypotheses are added to promising nodes (both leaves and inner nodes) of the tree using some randomized method. Theoretical results show that the proposed algorithm asymptotically achieves the performance of the base boosting algorithm applied. Experiments are provided in ranking web documents and move ordering in chess, and the results indicate that the new strategy yields better performance when the length of the sequence is limited, and converges to similar performance as the original boosting algorithms otherwise. © 2013 The Author(s)

    Bootstrapping the energy flow in the beginning of life.

    Get PDF
    This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in the development of computers, the first generation making possible the calculations necessary for constructing the second one, etc. In the biogenetic upstart of an energy flow, non-metals in the lower periods of the Periodic Table of Elements would have constituted the most primitive systems, their operation being enhanced and later supplanted by elements in the higher periods that demand more energy. This bootstrapping process would put the development of the metabolisms based on the second period elements carbon, nitrogen and oxygen at the end of the evolutionary process rather than at, or even before, the biogenetic even
    corecore