46 research outputs found

    Quantitative estimation of tissue blood flow rate

    Get PDF
    The rate of blood flow through a tissue (F) is a critical parameter for assessing the functional efficiency of a blood vessel network following angiogenesis. This chapter aims to provide the principles behind the estimation of F, how F relates to other commonly used measures of tissue perfusion, and a practical approach for estimating F in laboratory animals, using small readily diffusible and metabolically inert radio-tracers. The methods described require relatively nonspecialized equipment. However, the analytical descriptions apply equally to complementary techniques involving more sophisticated noninvasive imaging. Two techniques are described for the quantitative estimation of F based on measuring the rate of tissue uptake following intravenous administration of radioactive iodo-antipyrine (or other suitable tracer). The Tissue Equilibration Technique is the classical approach and the Indicator Fractionation Technique, which is simpler to perform, is a practical alternative in many cases. The experimental procedures and analytical methods for both techniques are given, as well as guidelines for choosing the most appropriate method

    Effect of manipulation of primary tumour vascularity on metastasis in an adenocarcinoma model

    Get PDF
    One explanation for the clinical association between tumour vascularity and probability of metastasis is that increased primary tumour vascularity enhances haematogenous dissemination by offering greater opportunity for tumour cell invasion into the circulation (intravasation). We devised an experimental tumour metastasis model that allowed manipulation of primary tumour vascularity with differential exposure of the primary and metastatic tumour site to angiogenic agents. We used this model to assess the effects of local and systemic increases in the level of the angiogenic agent basic fibroblast growth factor on metastasis. BDIX rats with implanted hind limb K12/TR adenocarcinoma tumours received either intratumoural or systemic, basic fibroblast growth factor or saline infusion. Both intratumoural and systemic basic fibroblast growth factor infusion resulted in significant increases in tumour vascularity, blood flow and growth, but not lung metastasis, compared with saline-infused controls. Raised basic fibroblast growth factor levels and increase in primary tumour vascularity did not increase metastasis. The clinical association between tumour vascularity and metastasis is most likely to arise from a metastatic tumour genotype that links increased tumour vascularity with greater metastatic potential

    Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia

    Get PDF
    Although angiogenesis is a prerequisite for the growth of most human solid tumours, alternative mechanisms of vascularisation can be adopted. We have previously described a non-angiogenic growth pattern in liver metastases of colorectal adenocarcinomas (CRC) in which tumour cells replace hepatocytes at the tumour-liver interface, preserving the liver architecture and co-opting the sinusoidal blood vessels. The aim of this study was to determine whether this replacement pattern occurs during liver metastasis of breast adenocarcinomas (BC) and whether the lack of an angiogenic switch in such metastases is due to the absence of hypoxia and subsequent vascular fibrinogen leakage. The growth pattern of 45 BC liver metastases and 28 CRC liver metastases (73 consecutive patients) was assessed on haematoxylin- and eosin-stained tissue sections. The majority of the BC liver metastases had a replacement growth pattern (96%), in contrast to only 32% of the CRC metastases (P<0.0001). The median carbonic anhydrase 9 (CA9) expression (M75 antibody), as a marker of hypoxia, (intensity x % of stained tumour cells) was 0 in the BC metastases and 53 in the CRC metastases (P<0.0001). There was CA9 expression at the tumour-liver interface in only 16% of the BC liver metastases vs 54% of the CRC metastases (P=0.002). There was fibrin (T2G1 antibody) at the tumour-liver interface in only 21% of the BC metastases vs 56% of the CRC metastases (P=0.04). The median macrophage count (Chalkley morphometry; KP-1 anti-CD68 antibody) at the interface was 4.3 and 7.5, respectively (P<0.0001). Carbonic anhydrase 9 score and macrophage count were positively correlated (r=0.42; P=0.002) in all metastases. Glandular differentiation was less in the BC liver metastases: 80% had less than 10% gland formation vs only 7% of the CRC metastases (P<0.0001). The liver is a densely vascularised organ and can host metastases that exploit this environment by replacing the hepatocytes and co-opting the vasculature. Our findings confirm that a non-angiogenic pattern of liver metastasis indeed occurs in BC, that this pattern of replacement growth is even more prevalent than in CRC, and that the process induces neither hypoxia nor vascular leakage

    Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature

    Get PDF
    We performed a meta-analysis of all published studies relating intratumoural microvessel density (MVD) (45 studies) or vascular endothelial growth factor (VEGF) expression (27 studies), both reflecting angiogenesis, to relapse free (RFS) and overall survival (OS) in colorectal cancer (CRC). For each study, MVD impact was measured by risk ratio between the two survival distributions with median MVD as cutoff. Eleven studies did not mention survival data or fit inclusion criteria, six were multiple publications of same series, leaving 32 independent studies for MVD (3496 patients) and 18 for VEGF (2050 patients). Microvessel density was assessed by immunohistochemistry, using antibodies against factor VIII (16 studies), CD31 (10 studies) or CD34 (seven studies). Vascular endothelial growth factor expression was mostly assessed by immunohistochemistry. Statistics were performed for MVD in 22 studies (the others lacking survival statistics) including nine studies (n=957) for RFS and 18 for OS (n=2383) and for VEGF in 17 studies, including nine studies for RFS (n=1064) and 10 for OS (n=1301). High MVD significantly predicted poor RFS (RR=2.32 95% CI: 1.39–3.90; P<0.001) and OS (RR=1.44; 95% CI: 1.08–1.92; P=0.01). Using CD31 or CD34, MVD was inversely related to survival, whereas it was not using factor VIII. Vascular endothelial growth factor expression significantly predicted poor RFS (RR=2.84; 95% CI: 1.95–4.16) and OS (RR=1.65; 95% CI: 1.27–2.14). To strengthen our findings, future prospective studies should explore the relation between MVD or VEGF expression and survival or response to therapy (e.g. antiangiogenic therapy). Assessment of these angiogenic markers should be better standardised in future studies

    Supersymmetric QCD corrections to e+etbˉHe^+e^-\to t\bar{b}H^- and the Bernstein-Tkachov method of loop integration

    Full text link
    The discovery of charged Higgs bosons is of particular importance, since their existence is predicted by supersymmetry and they are absent in the Standard Model (SM). If the charged Higgs bosons are too heavy to be produced in pairs at future linear colliders, single production associated with a top and a bottom quark is enhanced in parts of the parameter space. We present the next-to-leading-order calculation in supersymmetric QCD within the minimal supersymmetric SM (MSSM), completing a previous calculation of the SM-QCD corrections. In addition to the usual approach to perform the loop integration analytically, we apply a numerical approach based on the Bernstein-Tkachov theorem. In this framework, we avoid some of the generic problems connected with the analytical method.Comment: 14 pages, 6 figures, accepted for publication in Phys. Rev.

    Helical structures in the nuclei of free-living amebas

    No full text
    corecore