60 research outputs found

    Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method

    Full text link
    As originally formulated, the Generalized Alignment Index (GALI) method of chaos detection has so far been applied to distinguish quasiperiodic from chaotic motion in conservative nonlinear dynamical systems. In this paper we extend its realm of applicability by using it to investigate the local dynamics of periodic orbits. We show theoretically and verify numerically that for stable periodic orbits the GALIs tend to zero following particular power laws for Hamiltonian flows, while they fluctuate around non-zero values for symplectic maps. By comparison, the GALIs of unstable periodic orbits tend exponentially to zero, both for flows and maps. We also apply the GALIs for investigating the dynamics in the neighborhood of periodic orbits, and show that for chaotic solutions influenced by the homoclinic tangle of unstable periodic orbits, the GALIs can exhibit a remarkable oscillatory behavior during which their amplitudes change by many orders of magnitude. Finally, we use the GALI method to elucidate further the connection between the dynamics of Hamiltonian flows and symplectic maps. In particular, we show that, using for the computation of GALIs the components of deviation vectors orthogonal to the direction of motion, the indices of stable periodic orbits behave for flows as they do for maps.Comment: 17 pages, 9 figures (accepted for publication in Int. J. of Bifurcation and Chaos

    How does the Smaller Alignment Index (SALI) distinguish order from chaos?

    Full text link
    The ability of the Smaller Alignment Index (SALI) to distinguish chaotic from ordered motion, has been demonstrated recently in several publications.\cite{Sk01,GRACM} Basically it is observed that in chaotic regions the SALI goes to zero very rapidly, while it fluctuates around a nonzero value in ordered regions. In this paper, we make a first step forward explaining these results by studying in detail the evolution of small deviations from regular orbits lying on the invariant tori of an {\bf integrable} 2D Hamiltonian system. We show that, in general, any two initial deviation vectors will eventually fall on the ``tangent space'' of the torus, pointing in different directions due to the different dynamics of the 2 integrals of motion, which means that the SALI (or the smaller angle between these vectors) will oscillate away from zero for all time.Comment: To appear in Progress of Theoretical Physics Supplemen

    Quasi-stationary chaotic states in multi-dimensional Hamiltonian systems

    Full text link
    We study numerically statistical distributions of sums of chaotic orbit coordinates, viewed as independent random variables, in weakly chaotic regimes of three multi-dimensional Hamiltonian systems: Two Fermi-Pasta-Ulam (FPU-ÎČ\beta) oscillator chains with different boundary conditions and numbers of particles and a microplasma of identical ions confined in a Penning trap and repelled by mutual Coulomb interactions. For the FPU systems we show that, when chaos is limited within "small size" phase space regions, statistical distributions of sums of chaotic variables are well approximated for surprisingly long times (typically up to t≈106t\approx10^6) by a qq-Gaussian (1<q<31<q<3) distribution and tend to a Gaussian (q=1q=1) for longer times, as the orbits eventually enter into "large size" chaotic domains. However, in agreement with other studies, we find in certain cases that the qq-Gaussian is not the only possible distribution that can fit the data, as our sums may be better approximated by a different so-called "crossover" function attributed to finite-size effects. In the case of the microplasma Hamiltonian, we make use of these qq-Gaussian distributions to identify two energy regimes of "weak chaos"-one where the system melts and one where it transforms from liquid to a gas state-by observing where the qq-index of the distribution increases significantly above the q=1q=1 value of strong chaos.Comment: 32 pages, 13 figures, Submitted for publication to Physica

    THE CONTRIBUTION OF THE EFFECTIVENESS OF HIGH-LEVEL GOALKEEPERS HANDBALL TO THE FINAL TEAM RANKING IN A CHAMPIONSHIP

    Get PDF
    The role and contribution of each player in a game increases when all the players of the same team are trying with all their might for the same purpose, the win. One of the main contributors of this effort is the efficiency of the player who struggling under the post (goalkeeper) in order to infringe as little as possible compared with the post of the opponent goalkeeper. The purpose of this study was to compare and examine whether the somatometric characteristics and the effectiveness of the goalkeepers (GK) high level, contribute and how to achieve a winning result. All GK who declared and competed in the Croatian European Championship in 2018 were tested and compared, categorized based on the percentage of efficiency each of them presented in the championship in live-game throws and 7-meter throws. Their individual effectiveness was also evaluated by the final ranking of their teams in the championship. Statistical analysis of the data was performed with SPSS 24.0 statistical package and more specifically Crosstabs (Independence Check) command. The analysis showed that GK are classified in the category of “high” GK, in terms of age are older than other players. In terms of efficiency, it seemed that the GK whose teams were ranked first in the championship showed lower rankings than those whose teams were ranked lower. This leads us to conclude that the effectiveness of the GK does not determine or guarantee the performance of a team but just contributes to the good performance of each player. On the contrary, the excellent defense function on the one hand restricts the activity of the offensives, on the other hand, it facilitates the GK in the process of repulse of the throws

    Complex statistics and diffusion in nonlinear disordered particle chains.

    Get PDF
    We investigate dynamically and statistically diffusive motion in a Klein-Gordon particle chain in the presence of disorder. In particular, we examine a low energy (subdiffusive) and a higher energy (self-trapping) case and verify that subdiffusive spreading is always observed. We then carry out a statistical analysis of the motion, in both cases, in the sense of the Central Limit Theorem and present evidence of different chaos behaviors, for various groups of particles. Integrating the equations of motion for times as long as 10(9), our probability distribution functions always tend to Gaussians and show that the dynamics does not relax onto a quasi-periodic Kolmogorov-Arnold-Moser torus and that diffusion continues to spread chaotically for arbitrarily long times

    Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method

    Full text link
    We investigate the detailed dynamics of multidimensional Hamiltonian systems by studying the evolution of volume elements formed by unit deviation vectors about their orbits. The behavior of these volumes is strongly influenced by the regular or chaotic nature of the motion, the number of deviation vectors, their linear (in)dependence and the spectrum of Lyapunov exponents. The different time evolution of these volumes can be used to identify rapidly and efficiently the nature of the dynamics, leading to the introduction of quantities that clearly distinguish between chaotic behavior and quasiperiodic motion on NN-dimensional tori. More specifically we introduce the Generalized Alignment Index of order kk (GALIk_k) as the volume of a generalized parallelepiped, whose edges are kk initially linearly independent unit deviation vectors from the studied orbit whose magnitude is normalized to unity at every time step. The GALIk_k is a generalization of the Smaller Alignment Index (SALI) (GALI2_2 ∝\propto SALI). However, GALIk_k provides significantly more detailed information on the local dynamics, allows for a faster and clearer distinction between order and chaos than SALI and works even in cases where the SALI method is inconclusive.Comment: 45 pages, 10 figures, accepted for publication in Physica

    Stability of Simple Periodic Orbits and Chaos in a Fermi -- Pasta -- Ulam Lattice

    Full text link
    We investigate the connection between local and global dynamics in the Fermi -- Pasta -- Ulam (FPU) ÎČ\beta -- model from the point of view of stability of its simplest periodic orbits (SPOs). In particular, we show that there is a relatively high qq mode (q=2(N+1)/3)(q=2(N+1)/{3}) of the linear lattice, having one particle fixed every two oppositely moving ones (called SPO2 here), which can be exactly continued to the nonlinear case for N=5+3m,m=0,1,2,...N=5+3m, m=0,1,2,... and whose first destabilization, E2uE_{2u}, as the energy (or ÎČ\beta) increases for {\it any} fixed NN, practically {\it coincides} with the onset of a ``weak'' form of chaos preceding the break down of FPU recurrences, as predicted recently in a similar study of the continuation of a very low (q=3q=3) mode of the corresponding linear chain. This energy threshold per particle behaves like E2uN∝N−2\frac{E_{2u}}{N}\propto N^{-2}. We also follow exactly the properties of another SPO (with q=(N+1)/2q=(N+1)/{2}) in which fixed and moving particles are interchanged (called SPO1 here) and which destabilizes at higher energies than SPO2, since E1uN∝N−1\frac{E_{1u}}{N}\propto N^{-1}. We find that, immediately after their first destabilization, these SPOs have different (positive) Lyapunov spectra in their vicinity. However, as the energy increases further (at fixed NN), these spectra converge to {\it the same} exponentially decreasing function, thus providing strong evidence that the chaotic regions around SPO1 and SPO2 have ``merged'' and large scale chaos has spread throughout the lattice.Comment: Physical Review E, 18 pages, 6 figure
    • 

    corecore