14,712 research outputs found
A Spin-Isospin Dependent 3N Scattering Formalism in a 3D Faddeev Scheme
We have introduced a spin-isospin dependent three-dimensional approach for
formulation of the three-nucleon scattering. Faddeev equation is expressed in
terms of vector Jacobi momenta and spin-isospin quantum numbers of each
nucleon. Our formalism is based on connecting the transition amplitude to
momentum-helicity representations of the two-body -matrix and the deuteron
wave function. Finally the expressions for nucleon-deuteron elastic scattering
and full breakup process amplitudes are presented.Comment: 17 page
Flood impact assessment under climate change scenarios in central Taipei area, Taiwan
Providing effective information regarding flood control for responding climate change is essential to
future flood risk management for cities. This study simulated and assessed the impacts of flooding for
future climate change scenarios in Taipei city, Taiwan. We modelled rainfall events, generated by
general circulation models, with different return periods. The flood extents and damage in the Central
Taipei Area for the A1B climate change scenarios were compared to the ones, caused by the rainfall
events with same return periods, without climate change (baseline scenario). The proposed approach
provides potential flooding maps and flood damage assessment for climate change scenarios as
useful information for flood risk management in urban areas.The work is supported by the National Science Council, Taiwan (NSC 99-2915-I-002-120) and the
CORFU project, funded by the European Commission through Framework Programme 7, Grant
Number 244047
Evidence of Electromagnetic Absorption by Collective Modes in the Heavy Fermion Superconductor UBe13
We present results of a microwave surface impedance study of the heavy
fermion superconductor UBe13. We clearly observe an absorption peak whose
frequency- and temperature-dependence scales with the BCS gap function.
Resonant absorption into a collective mode, with energy approximately
proportional to the superconducting gap, is proposed as a possible
explantation
Two-gap superconductivity in Ba_1-xK_xFe_2As_2: A complementary study of the magnetic penetration depth by \muSR and ARPES
We investigate the magnetic penetration depth \lambda in superconducting
Ba_1-xK_xFe_2As_2 (T_c\simeq32K) with muon-spin rotation (\muSR) and
angle-resolved photoemission (ARPES). Using \muSR, we find the
penetration-depth anisotropy \gamma_\lambda=\lambda_c/\lambda_{ab} and the
second-critical-field anisotropy \gamma_{H_c2} to show an opposite T-evolution
below T_c. This dichotomy resembles the situation in the two-gap superconductor
MgB_2. A two-gap scenario is also suggested by an inflection point in the
in-plane penetration depth \lambda_ab around 7K. The complementarity of \muSR
and ARPES allows us to pinpoint the values of the two gaps and to arrive to a
remarkable agreement between the two techniques concerning the full T-evolution
of \lambda_ab. This provides further support for the described scenario and
establishes ARPES as a tool to assess macroscopic properties of the
superconducting condensate.Comment: Accepted for publication by Phys. Rev. Let
Charge Segregation, Cluster Spin-Glass and Superconductivity in La1.94Sr0.06CuO4
A 63Cu and 139La NMR/NQR study of superconducting (Tc=7 K) La1.94Sr0.06CuO4
single crystal is reported. Coexistence of spin-glass and superconducting
phases is found below ~5 K from 139La NMR relaxation. 63Cu and 139La NMR
spectra show that, upon cooling, CuO2 planes progressively separate into two
magnetic phases, one of them having enhanced antiferromagnetic correlations.
These results establish the AF-cluster nature of the spin-glass. We discuss how
this phase can be related to the microsegregation of mobile holes and to the
possible pinning of charge-stripes.Comment: 4 pages. Modified manuscript with clarification
Manifestation of three-body forces in three-body Bethe-Salpeter and light-front equations
Bethe-Salpeter and light-front bound state equations for three scalar
particles interacting by scalar exchange-bosons are solved in ladder
truncation. In contrast to two-body systems, the three-body binding energies
obtained in these two approaches differ significantly from each other: the
ladder kernel in light-front dynamics underbinds by approximately a factor of
two compared to the ladder Bethe-Salpeter equation. By taking into account
three-body forces in the light-front approach, generated by two exchange-bosons
in flight, we find that most of this difference disappears; for small exchange
masses, the obtained binding energies coincide with each other.Comment: 24 pages, 8 figures, submitted in Few-Body System
A New Treatment of 2N and 3N Bound States in Three Dimensions
The direct treatment of the Faddeev equation for the three-boson system in 3
dimensions is generalized to nucleons. The one Faddeev equation for identical
bosons is replaced by a strictly finite set of coupled equations for scalar
functions which depend only on 3 variables. The spin-momentum dependence
occurring as scalar products in 2N and 3N forces accompanied by scalar
functions is supplemented by a corresponding expansion of the Faddeev
amplitudes. After removing the spin degrees of freedom by suitable operations
only scalar expressions depending on momenta remain. The corresponding steps
are performed for the deuteron leading to two coupled equations.Comment: 19 page
A Possible Detection of Occultation by a Proto-planetary Clump in GM Cephei
GM Cep in the young (~4 Myr) open cluster Trumpler 37 has been known to be an
abrupt variable and to have a circumstellar disk with very active accretion.
Our monitoring observations in 2009-2011 revealed the star to show sporadic
flare events, each with brightening of < 0.5 mag lasting for days. These
brightening events, associated with a color change toward the blue, should
originate from an increased accretion activity. Moreover, the star also
underwent a brightness drop of ~1 mag lasting for about a month, during which
the star became bluer when fainter. Such brightness drops seem to have a
recurrence time scale of a year, as evidenced in our data and the photometric
behavior of GM Cep over a century. Between consecutive drops, the star
brightened gradually by about 1 mag and became blue at peak luminosity. We
propose that the drop is caused by obscuration of the central star by an
orbiting dust concentration. The UX Orionis type of activity in GM Cep
therefore exemplifies the disk inhomogeneity process in transition between
grain coagulation and planetesimal formation in a young circumstellar disk.Comment: In submission to the Astrophysical Journal, 4 figure
Universality of the Crossing Probability for the Potts Model for q=1,2,3,4
The universality of the crossing probability of a system to
percolate only in the horizontal direction, was investigated numerically by
using a cluster Monte-Carlo algorithm for the -state Potts model for
and for percolation . We check the percolation through
Fortuin-Kasteleyn clusters near the critical point on the square lattice by
using representation of the Potts model as the correlated site-bond percolation
model. It was shown that probability of a system to percolate only in the
horizontal direction has universal form for
as a function of the scaling variable . Here,
is the probability of a bond to be closed, is the
nonuniversal crossing amplitude, is the nonuniversal metric factor,
is the nonuniversal scaling index, is the correlation
length index.
The universal function . Nonuniversal scaling factors
were found numerically.Comment: 15 pages, 3 figures, revtex4b, (minor errors in text fixed,
journal-ref added
- …
